Publications by authors named "David De Silva Thompson"

Using microspherical scaffolds as building blocks to repair bone defects of specific size and shape has been proposed as a tissue engineering strategy. Here, phosphate glass (PG) microcarriers doped with 5 mol % TiO and either 0 mol % CoO (CoO 0%) or 2 mol % CoO (CoO 2%) were investigated for their ability to support osteogenic and vascular responses of human mesenchymal stem cells (hMSCs). Together with standard culture techniques, cell-material interactions were studied using a novel perfusion microfluidic bioreactor that enabled cell culture on microspheres, along with automated processing and screening of culture variables.

View Article and Find Full Text PDF

Tissue engineering has the potential to augment bone grafting. Employing microcarriers as cell-expansion vehicles is a promising bottom-up bone tissue engineering strategy. Here we propose a collaborative approach between experimental work and mathematical modelling to develop protocols for growing microcarrier-based engineered constructs of clinically relevant size.

View Article and Find Full Text PDF

Tissue engineering is a promising approach for bone regeneration; yet challenges remain that limit successful translation to patients. It is necessary to understand how real-world manufacturing processes will affect the constituent cells and biomaterials that are needed to create engineered bone. Bioactive phosphate glasses processed into microspheres are an attractive platform for expanding bone-forming cells and also for driving their osteogenic differentiation and maturation.

View Article and Find Full Text PDF

The production of large quantities of functional vascularized bone tissue ex vivo still represent an unmet clinical challenge. Microcarriers offer a potential solution to scalable manufacture of bone tissue due to their high surface area-to-volume ratio and the capacity to be assembled using a modular approach. Microcarriers made of phosphate bioactive glass doped with titanium dioxide have been previously shown to enhance proliferation of osteoblast progenitors and maturation towards functional osteoblasts.

View Article and Find Full Text PDF