Publications by authors named "David D van Niekerk"

Glycolytic oscillations have been studied for well over 60 years, but aspects of their function, and mechanisms of regulation and synchronisation remain unclear. Glycolysis is amenable to mechanistic mathematical modelling, as its components have been well characterised, and the system can be studied at many organisational levels: in vitro reconstituted enzymes, cell free extracts, individual cells, and cell populations. In recent years, the emergence of individual cell analysis has opened new ways of studying this intriguing system.

View Article and Find Full Text PDF

By analysing a large set of models obtained from the JWS Online and Biomodels databases, we tested to what extent the disequilibrium ratio can be used as an estimator for the flux control of a reaction, a discussion point that was already raised by Kacser and Burns, and Heinrich and Rapoport in their seminal MCA manuscripts. Whereas no functional relation was observed, the disequilibrium ratio can be used as an estimator for the maximal flux control of a reaction step. We extended the original analysis of the relationship by incorporating the overall pathway disequilibrium ratio in the expression, which made it possible to make explicit expressions for flux control coefficients.

View Article and Find Full Text PDF

Upon infection by the malaria parasite Plasmodium falciparum, the glycolytic rate of a red blood cell increases up to 100-fold, possibly contributing to lactic acidosis and hypoglycemia in patients with severe malaria. This dramatic increase in glucose uptake and metabolism was correctly predicted by a newly constructed detailed enzyme kinetic model of glucose metabolism in the trophozoite-infected red blood cell. Subsequently, we expanded the model to simulate an infected red blood cell culture, including the different asexual blood-stage forms of the malaria parasite.

View Article and Find Full Text PDF

The glycolytic flux, and in particular lactate production, is strongly increased in cancer cells compared to normal cells, a characteristic often referred to as aerobic glycolysis or the Warburg effect. This makes the glycolytic pathway a potential drug target, in particular if the flux control distribution in the pathway has shifted due to the metabolic reprogramming in cancer cells. The flux response of a drug is dependent on both the sensitivity of the target to the drug and the flux control of the target, and both these characteristics can be exploited to obtain selectivity for cancer cells.

View Article and Find Full Text PDF

Background: The fidelity and reliability of disease model predictions depend on accurate and precise descriptions of processes and determination of parameters. Various models exist to describe within-host dynamics during malaria infection but there is a shortage of clinical data that can be used to quantitatively validate them and establish confidence in their predictions. In addition, model parameters often contain a degree of uncertainty and show variations between individuals, potentially undermining the reliability of model predictions.

View Article and Find Full Text PDF

This study demonstrates the application of a mathematical steroidogenic model, constructed with individual in vitro enzyme characterisations, to simulate in vivo steroidogenesis in a diseased state. This modelling approach was applied to the South African Angora goat, that suffers from hypocortisolism caused by altered adrenal function. These animals are extremely vulnerable to cold stress, leading to substantial monetary loss in the mohair industry.

View Article and Find Full Text PDF

Many organs have internal structures with spatially differentiated and sometimes temporally synchronized groups of cells. The mechanisms leading to such differentiation and coordination are not well understood. Here we design a diffusion-limited microfluidic system to mimic a multicellular organ structure with peripheral blood flow and test whether a group of individually oscillating yeast cells could form subpopulations of spatially differentiated and temporally synchronized cells.

View Article and Find Full Text PDF

The response of oscillatory systems to external perturbations is crucial for emergent properties such as synchronisation and phase locking and can be quantified in a phase response curve (PRC). In individual, oscillating yeast cells, we characterised experimentally the phase response of glycolytic oscillations for external acetaldehyde pulses and followed the transduction of the perturbation through the system. Subsequently, we analysed the control of the relevant system components in a detailed mechanistic model.

View Article and Find Full Text PDF

In this unit, we provide a clear exposition of the methodology employed to study dynamic responses in individual cells, using microfluidics for controlling and adjusting the cell environment, optical tweezers for precise cell positioning, and fluorescence microscopy for detecting intracellular responses. This unit focuses on the induction and study of glycolytic oscillations in single yeast cells, but the methodology can easily be adjusted to examine other biological questions and cell types. We present a step-by-step guide for fabrication of the microfluidic device, for alignment of the optical tweezers, for cell preparation, and for time-lapse imaging of glycolytic oscillations in single cells, including a discussion of common pitfalls.

View Article and Find Full Text PDF

Summary: JWS Online is a web-based platform for construction, simulation and exchange of models in standard formats. We have extended the platform with a database for curated simulation experiments that can be accessed directly via a URL, allowing one-click reproduction of published results. Users can modify the simulation experiments and export them in standard formats.

View Article and Find Full Text PDF

The FAIRDOMHub is a repository for publishing FAIR (Findable, Accessible, Interoperable and Reusable) Data, Operating procedures and Models (https://fairdomhub.org/) for the Systems Biology community. It is a web-accessible repository for storing and sharing systems biology research assets.

View Article and Find Full Text PDF

Unlabelled: Glycolysis is the main pathway for ATP production in the malaria parasite Plasmodium falciparum and essential for its survival. Following a sensitivity analysis of a detailed kinetic model for glycolysis in the parasite, the glucose transport reaction was identified as the step whose activity needed to be inhibited to the least extent to result in a 50% reduction in glycolytic flux. In a subsequent inhibitor titration with cytochalasin B, we confirmed the model analysis experimentally and measured a flux control coefficient of 0.

View Article and Find Full Text PDF

We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism.

View Article and Find Full Text PDF

Unlabelled: The enzymes in the Embden-Meyerhof-Parnas pathway of Plasmodium falciparum trophozoites were kinetically characterized and their integrated activities analyzed in a mathematical model. For validation of the model, we compared model predictions for steady-state fluxes and metabolite concentrations of the hexose phosphates with experimental values for intact parasites. The model, which is completely based on kinetic parameters that were measured for the individual enzymes, gives an accurate prediction of the steady-state fluxes and intermediate concentrations.

View Article and Find Full Text PDF

Unlabelled: Oscillations are widely distributed in nature and synchronization of oscillators has been described at the cellular level (e.g. heart cells) and at the population level (e.

View Article and Find Full Text PDF

There are many examples of oscillations in biological systems and one of the most investigated is glycolytic oscillations in yeast. These oscillations have been studied since the 1950s in dense, synchronized populations and in cell-free extracts, but it has for long been unknown whether a high cell density is a requirement for oscillations to be induced, or if individual cells can oscillate also in isolation without synchronization. Here we present an experimental method and a detailed kinetic model for studying glycolytic oscillations in individual, isolated yeast cells and compare them to previously reported studies of single-cell oscillations.

View Article and Find Full Text PDF

Unlabelled: An existing detailed kinetic model for the steady-state behavior of yeast glycolysis was tested for its ability to simulate dynamic behavior. Using a small subset of experimental data, the original model was adapted by adjusting its parameter values in three optimization steps. Only small adaptations to the original model were required for realistic simulation of experimental data for limit-cycle oscillations.

View Article and Find Full Text PDF

Unlabelled: In an accompanying paper [du Preez et al., (2012) FEBS J279, 2810-2822], we adapt an existing kinetic model for steady-state yeast glycolysis to simulate limit-cycle oscillations. Here we validate the model by testing its capacity to simulate a wide range of experiments on dynamics of yeast glycolysis.

View Article and Find Full Text PDF

Unlabelled: Yeast glycolytic oscillations have been studied since the 1950s in cell-free extracts and intact cells. For intact cells, sustained oscillations have so far only been observed at the population level, i.e.

View Article and Find Full Text PDF