Background: Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.
Methodology/principal Findings: This study examined the development of articular cartilage neotissue within a self-assembling process in two phases.
Hyaluronan is a ubiquitous component of the extracellular matrix with important roles in cell and tissue functions. Hyaluronan content is often elevated in cardiovascular diseases, such as mitral valve disease and atherosclerosis. The objective of this study was to determine the impact of endogenously produced hyaluronan dynamically cultured three-dimensional model of collagenous tissues.
View Article and Find Full Text PDFHyaluronan is an essential component of the native extracellular matrix that has often been added exogenously to biomaterials. The role of endogenously produced hyaluronan on soft tensile tissue mechanics, however, has been largely overlooked. To investigate this aspect of hyaluronan using a cell-mediated approach, cells overexpressing the hyaluronan synthases (has), namely has-1, has-2, has-3 or the empty vector control LXSN, were seeded within collagen gel scaffolds.
View Article and Find Full Text PDFHyaluronan (HA) is a versatile molecular tool with considerable potential for tissue engineering applications. The inclusion of HA has created biocompatible biomaterials and engineered tissues that can be crosslinked or degraded controllably and can facilitate angiogenesis, osteointegration, and cell phenotype preservation. The utility of HA in tissue engineering has been broadened further by the recently identified HA synthases, which can be manipulated to stimulate the endogenous production of HA by cells seeded within biomaterial scaffolds.
View Article and Find Full Text PDFBackground And Aim Of The Study: Organ cultures maintain cells within their native microstructural environment, and thus offer greater potential for studying tissue disease and remodeling than do monolayer cell cultures or pathological examinations of diseased tissue. To validate an in-vitro heart valve organ culture model, cell viability was examined within valve tissues over sustained culture periods.
Methods: Following culture of blocks of valve tissue for 1 to 49 days, cross-sections were cut with a vibratome, stained with a LIVE/DEAD kit, and imaged with confocal microscopy to quantify the number of live and dead cells present.