Publications by authors named "David Cuesta-Frau"

Slope Entropy (SlpEn) is a novel method recently proposed in the field of time series entropy estimation. In addition to the well-known embedded dimension parameter, , used in other methods, it applies two additional thresholds, denoted as δ and γ, to derive a symbolic representation of a data subsequence. The original paper introducing SlpEn provided some guidelines for recommended specific values of these two parameters, which have been successfully followed in subsequent studies.

View Article and Find Full Text PDF

Many time series entropy calculation methods have been proposed in the last few years. They are mainly used as numerical features for signal classification in any scientific field where data series are involved. We recently proposed a new method, Slope Entropy (SlpEn), based on the relative frequency of differences between consecutive samples of a time series, thresholded using two input parameters, γ and δ.

View Article and Find Full Text PDF

Slope Entropy (SlpEn) is a very recently proposed entropy calculation method. It is based on the differences between consecutive values in a time series and two new input thresholds to assign a symbol to each resulting difference interval. As the histogram normalisation value, SlpEn uses the actual number of unique patterns found instead of the theoretically expected value.

View Article and Find Full Text PDF

Body temperature is usually employed in clinical practice by strict binary thresholding, aiming to classify patients as having fever or not. In the last years, other approaches based on the continuous analysis of body temperature time series have emerged. These are not only based on absolute thresholds but also on patterns and temporal dynamics of these time series, thus providing promising tools for early diagnosis.

View Article and Find Full Text PDF

Bipolar Disorder (BD) is an illness with high prevalence and a huge social and economic impact. It is recurrent, with a long-term evolution in most cases. Early treatment and continuous monitoring have proven to be very effective in mitigating the causes and consequences of BD.

View Article and Find Full Text PDF

Fever is a readily measurable physiological response that has been used in medicine for centuries. However, the information provided has been greatly limited by a plain thresholding approach, overlooking the additional information provided by temporal variations and temperature values below such threshold that are also representative of the subject status. In this paper, we propose to utilize continuous body temperature time series of patients that developed a fever, in order to apply a method capable of diagnosing the specific underlying fever cause only by means of a pattern relative frequency analysis.

View Article and Find Full Text PDF

Despite its widely tested and proven usefulness, there is still room for improvement in the basic permutation entropy (PE) algorithm, as several subsequent studies have demonstrated in recent years. Some of these new methods try to address the well-known PE weaknesses, such as its focus only on ordinal and not on amplitude information, and the possible detrimental impact of equal values found in subsequences. Other new methods address less specific weaknesses, such as the PE results' dependence on input parameter values, a common problem found in many entropy calculation methods.

View Article and Find Full Text PDF

Despite its widely demonstrated usefulness, there is still room for improvement in the basic Permutation Entropy (PE) algorithm, as several subsequent studies have proposed in the recent years. For example, some improved PE variants try to address possible PE weaknesses, such as its only focus on ordinal information, and not on amplitude, or the possible detrimental impact of equal values in subsequences due to motif ambiguity. Other evolved PE methods try to reduce the influence of input parameters.

View Article and Find Full Text PDF

Continuous monitoring of breathing frequency (f) could foster early prediction of adverse clinical effects and exacerbation of medical conditions. Current solutions are invasive or obtrusive and thus not suitable for prolonged monitoring outside the clinical setting. Previous studies demonstrated the feasibility of deriving f by measuring inclination changes due to breathing using accelerometers or inertial measurement units (IMU).

View Article and Find Full Text PDF

Background: The endoscopically implanted duodenal-jejunal bypass liner (DJBL) is an attractive alternative to bariatric surgery for obese diabetic patients. This article aims to study dynamical aspects of the glycaemic profile that may influence DJBL effects.

Methods: Thirty patients underwent DJBL implantation and were followed for 10 months.

View Article and Find Full Text PDF

Complexity analysis of glucose time series with Detrended Fluctuation Analysis (DFA) has been proved to be useful for the prediction of type 2 diabetes mellitus (T2DM) development. We propose a modified DFA algorithm, review some of its characteristics and compare it with other metrics derived from continuous glucose monitorization in this setting. Several issues of the DFA algorithm were evaluated: (1) Time windowing: the best predictive value was obtained including all time-windows from 15 minutes to 24 hours.

View Article and Find Full Text PDF

Fever is a common symptom of many diseases. Fever temporal patterns can be different depending on the specific pathology. Differentiation of diseases based on multiple mathematical features and visual observations has been recently studied in the scientific literature.

View Article and Find Full Text PDF

Permutation Entropy (PE) is a very popular complexity analysis tool for time series. De-spite its simplicity, it is very robust and yields goods results in applications related to assessing the randomness of a sequence, or as a quantitative feature for signal classification. It is based on com-puting the Shannon entropy of the relative frequency of all the ordinal patterns found in a time series.

View Article and Find Full Text PDF

Permutation Entropy (PE) is a time series complexity measure commonly used in a variety of contexts, with medicine being the prime example. In its general form, it requires three input parameters for its calculation: time series length , embedded dimension , and embedded delay τ . Inappropriate choices of these parameters may potentially lead to incorrect interpretations.

View Article and Find Full Text PDF

This paper analyses the performance of SampEn and one of its derivatives, Fuzzy Entropy (FuzzyEn), in the context of artifacted blood glucose time series classification. This is a difficult and practically unexplored framework, where the availability of more sensitive and reliable measures could be of great clinical impact. Although the advent of new blood glucose monitoring technologies may reduce the incidence of the problems stated above, incorrect device or sensor manipulation, patient adherence, sensor detachment, time constraints, adoption barriers or affordability can still result in relatively short and artifacted records, as the ones analyzed in this paper or in other similar works.

View Article and Find Full Text PDF

Many entropy-related methods for signal classification have been proposed and exploited successfully in the last several decades. However, it is sometimes difficult to find the optimal measure and the optimal parameter configuration for a specific purpose or context. Suboptimal settings may therefore produce subpar results and not even reach the desired level of significance.

View Article and Find Full Text PDF

Most cardiac arrhythmias can be classified as atrial flutter, focal atrial tachycardia, or atrial fibrillation. They have been usually treated using drugs, but catheter ablation has proven more effective. This is an invasive method devised to destroy the heart tissue that disturbs correct heart rhythm.

View Article and Find Full Text PDF

This paper evaluates the performance of first generation entropy metrics, featured by the well known and widely used Approximate Entropy (ApEn) and Sample Entropy (SampEn) metrics, and what can be considered an evolution from these, Fuzzy Entropy (FuzzyEn), in the Electroencephalogram (EEG) signal classification context. The study uses the commonest artifacts found in real EEGs, such as white noise, and muscular, cardiac, and ocular artifacts. Using two different sets of publicly available EEG records, and a realistic range of amplitudes for interfering artifacts, this work optimises and assesses the robustness of these metrics against artifacts in class segmentation terms probability.

View Article and Find Full Text PDF

Body temperature monitoring provides health carers with key clinical information about the physiological status of patients. Temperature readings are taken periodically to detect febrile episodes and consequently implement the appropriate medical countermeasures. However, fever is often difficult to assess at early stages, or remains undetected until the next reading, probably a few hours later.

View Article and Find Full Text PDF

Many physiological systems are paradigmatic examples of complex networks, displaying behaviors best studied by means of tools derived from nonlinear dynamics and fractal geometry. Furthermore, while conventional wisdom considers health as an 'orderly' situation (and diseases are often called 'disorders'), truth is that health is characterized by a remarkable (pseudo)-randomness, and the loss of this pseudo-randomness (i.e.

View Article and Find Full Text PDF

Body temperature is a health or disease marker that has been in clinical use for centuries. The threshold currently applied to define fever, with small variations, is 38 °C. However, current approaches do not provide a full picture of the thermoregulation process and its correlation with disease.

View Article and Find Full Text PDF

Signal entropy measures such as approximate entropy (ApEn) and sample entropy (SampEn) are widely used in heart rate variability (HRV) analysis and biomedical research. In this article, we analyze the influence of QRS detection errors on HRV results based on signal entropy measures. Specifically, we study the influence that QRS detection errors have on the discrimination power of ApEn and SampEn using the cardiac arrhythmia suppression trial (CAST) database.

View Article and Find Full Text PDF

This study is aimed at characterizing three signal entropy measures, Approximate Entropy (ApEn), Sample Entropy (SampEn) and Multiscale Entropy (MSE) over real EEG signals when a number of samples are randomly lost due to, for example, wireless data transmission. The experimental EEG database comprises two main signal groups: control EEGs and epileptic EEGs. Results show that both SampEn and ApEn enable a clear distinction between control and epileptic signals, but SampEn shows a more robust performance over a wide range of sample loss ratios.

View Article and Find Full Text PDF

Objective: There is an ongoing research effort devoted to characterize the signal regularity metrics approximate entropy (ApEn) and sample entropy (SampEn) in order to better interpret their results in the context of biomedical signal analysis. Along with this line, this paper addresses the influence of abnormal spikes (impulses) on ApEn and SampEn measurements.

Methods: A set of test signals consisting of generic synthetic signals, simulated biomedical signals, and real RR records was created.

View Article and Find Full Text PDF

Biomedical signals are nonstationary in nature, namely, their statistical properties are time-dependent. Such changes in the underlying statistical properties of the signal and the effects of external noise often affect the performance and applicability of automatic signal processing methods that require stationarity. A number of methods have been proposed to address the problem of finding stationary signal segments within larger nonstationary signals.

View Article and Find Full Text PDF