Publications by authors named "David Csabai"

Exposure to severe, uncontrollable and long-lasting stress is a strong risk factor for the development of numerous mental and somatic disorders. Animal studies document that chronic stress can alter neuronal morphology and functioning in limbic brain structures such as the prefrontal cortex. Mitochondria are intracellular powerhouses generating chemical energy for biochemical reactions of the cell.

View Article and Find Full Text PDF

Effective testing is an essential tool for controlling COVID-19. We aimed to analyse the data from first-wave PCR test results in Hungary's Southern Transdanubian region to improve testing strategies. We performed a retrospective analysis of all suspected COVID-19 cases between 17 March and 8 May 2020, collecting epidemiological, demographic, clinical and outcome data (ICU admission and mortality) with RT-qPCR test results.

View Article and Find Full Text PDF

Stress-induced cellular changes in limbic brain structures contribute to the development of various psychopathologies. detection of these microstructural changes may help us to develop objective biomarkers for psychiatric disorders. Diffusion tensor imaging (DTI) is an advanced neuroimaging technique that enables the non-invasive examination of white matter integrity and provides insights into the microstructure of pathways connecting brain areas.

View Article and Find Full Text PDF

Marijuana is a widely used recreational drug with increasing legalization worldwide for medical purposes. Most experimental studies use either synthetic or plant-derived cannabinoids to investigate the effect of cannabinoids on anxiety and cognitive functions. The aim of this study was to mimic real life situations where young people smoke cannabis regularly to relax from everyday stress.

View Article and Find Full Text PDF

Clinical and experimental data suggest that fronto-cortical GABAergic deficits contribute to the pathophysiology of major depressive disorder (MDD). To further test this hypothesis, we used a well characterized rat model for depression and examined the effect of stress on GABAergic neuron numbers and GABA-mediated synaptic transmission in the medial prefrontal cortex (mPFC) of rats. Adult male Wistar rats were subjected to 9-weeks of chronic mild stress (CMS) and based on their hedonic-anhedonic behavior they were behaviorally phenotyped as being stress-susceptible (anhedonic) or stress-resilient.

View Article and Find Full Text PDF

Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported.

View Article and Find Full Text PDF

Stress can alter the number and morphology of excitatory synapses in the hippocampus, but nothing is known about the effect of stress on inhibitory synapses. Here, we used an animal model for depression, the chronic mild stress model, and quantified the number of perisomatic inhibitory neurons and their synapses. We found reduced density of parvalbumin-positive (PV+) neurons in response to stress, while the density of cholecystokinin-immunoreactive (CCK+) neurons was unaffected.

View Article and Find Full Text PDF

Cortical GABAergic dysfunctions have been documented by clinical studies in major depression. We used here an animal model for depression and investigated whether long-term stress exposure can affect the number of GABAergic neurons in the orbitofrontal cortex (OFC). Adult male rats were subjected to 7-weeks of daily stress exposure and behaviorally phenotyped as anhedonic or stress-resilient animals.

View Article and Find Full Text PDF

Previous data have shown that high dose of nicotine administration or tobacco smoke exposure can reduce cell formation and the survival rate of adult-born neurons in the dentate gyrus. Here, we subjected adult mice to low intensity cigarette smoke exposure over long time periods. We did a 2×30min/day smoke exposure with two cigarettes per occasion over 1- or 2-months.

View Article and Find Full Text PDF