Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (, , ) and poorly metastatic KPC (, , ) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs).
View Article and Find Full Text PDFIn recent decades, the role of tumor biomechanics on cancer cell behavior at the primary site has been increasingly appreciated. However, the effect of primary tumor biomechanics on the latter stages of the metastatic cascade, such as metastatic seeding of secondary sites and outgrowth remains underappreciated. This work sought to address this in the context of triple negative breast cancer (TNBC), a cancer type known to aggressively disseminate at all stages of disease progression.
View Article and Find Full Text PDFThe PEAK family of pseudokinases, comprising PEAK1-3, are signalling scaffolds that play oncogenic roles in several poor prognosis human cancers, including triple negative breast cancer (TNBC). However, therapeutic targeting of pseudokinases is challenging due to their lack of catalytic activity. To address this, we screened for PEAK1 effectors by affinity purification and mass spectrometry, identifying calcium/calmodulin-dependent protein kinase 2 (CAMK2)D and CAMK2G.
View Article and Find Full Text PDFThe lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer.
View Article and Find Full Text PDFAberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models.
View Article and Find Full Text PDFGene expression noise is known to promote stochastic drug resistance through the elevated expression of individual genes in rare cancer cells. However, we now demonstrate that chemoresistant neuroblastoma cells emerge at a much higher frequency when the influence of noise is integrated across multiple components of an apoptotic signaling network. Using a JNK activity biosensor with longitudinal high-content and in vivo intravital imaging, we identify a population of stochastic, JNK-impaired, chemoresistant cells that exist because of noise within this signaling network.
View Article and Find Full Text PDFc-Jun N-terminal Kinases (JNKs) have been identified as key disease drivers in a number of pathophysiological settings and central oncogenic signaling nodes in various cancers. Their roles in driving primary tumor growth, positively regulating cancer stem cell populations, promoting invasion and facilitating metastatic outgrowth have led JNKs to be considered attractive targets for anti-cancer therapies. However, the homeostatic, apoptotic and tumor-suppressive activities of JNK proteins limit the use of direct JNK inhibitors in a clinical setting.
View Article and Find Full Text PDFThe tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance.
View Article and Find Full Text PDFBackground: Eosinophilic chronic rhinosinusitis is an often treatment-resistant inflammatory disease mediated by type-2 cytokines, including interleukin (IL)-5. Mepolizumab, a monoclonal antibody drug targeting IL-5, has demonstrated efficacy and safety in inflammatory airway disease, but there is negligible evidence on direct tissue response. The study's aim was to determine the local effect of mepolizumab on inflammatory biomarkers in sinonasal tissue of eosinophilic chronic rhinosinusitis patients.
View Article and Find Full Text PDFBackground: Prostate cancer growth is driven by androgen receptor signaling, and advanced disease is initially treatable by depleting circulating androgens. However, prostate cancer cells inevitably adapt, resulting in disease relapse with incurable castrate-resistant prostate cancer. Androgen deprivation therapy has many side effects, including hypercholesterolemia, and more aggressive and castrate-resistant prostate cancers typically feature cellular accumulation of cholesterol stored in the form of cholesteryl esters.
View Article and Find Full Text PDFBisphosphonates drugs target the skeleton and are used globally for the treatment of common bone disorders. Nitrogen-containing bisphosphonates act by inhibiting the mevalonate pathway in bone-resorbing osteoclasts but, surprisingly, also appear to reduce the risk of death from pneumonia. We overturn the long-held belief that these drugs act only in the skeleton and show that a fluorescently labelled bisphosphonate is internalised by alveolar macrophages and large peritoneal macrophages in vivo.
View Article and Find Full Text PDFCirculating lipids or cytokines are associated with prognosis in metastatic castration-resistant prostate cancer (mCRPC). This study aimed to understand the interactions between lipid metabolism and immune response in mCRPC by investigating the relationship between the plasma lipidome and cytokines. Plasma samples from two independent cohorts of men with mCRPC ( = 146, 139) having life-prolonging treatments were subjected to lipidomic and cytokine profiling (290, 763 lipids; 40 cytokines).
View Article and Find Full Text PDFAssessing drug response within live native tissue provides increased fidelity with regards to optimizing efficacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Förster resonance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progression. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging.
View Article and Find Full Text PDFHigh-risk neuroblastoma is an aggressive childhood cancer that is characterized by high rates of chemoresistance and frequent metastatic relapse. A number of studies have characterized the genetic and epigenetic landscape of neuroblastoma, but due to a generally low mutational burden and paucity of actionable mutations, there are few options for applying a comprehensive personalized medicine approach through the use of targeted therapies. Therefore, the use of multi-agent chemotherapy remains the current standard of care for neuroblastoma, which also conceptually limits the opportunities for developing an effective and widely applicable personalized medicine approach for this disease.
View Article and Find Full Text PDFWe previously used a pulse-based in vitro assay to unveil targetable signalling pathways associated with innate cisplatin resistance in lung adenocarcinoma (Hastings et al., 2020). Here, we advanced this model system and identified a non-genetic mechanism of resistance that drives recovery and regrowth in a subset of cells.
View Article and Find Full Text PDFThree-dimensional models of spheroid formation have been routinely used in the cancer field to test the colony forming capacity of malignant cells in an in vitro setting. Use of such a model provides a robust surrogate for in vivo testing, enabling large-scale interrogation into the effect of certain treatment conditions. This adapted protocol describes a high throughput and readily accessible composite alginate hydrogel system for spheroid formation, within a biomechanically tunable three-dimensional environment.
View Article and Find Full Text PDFGermline loss-of-function variation in TNFAIP3, encoding A20, has been implicated in a wide variety of autoinflammatory and autoimmune conditions, with acquired somatic missense mutations linked to cancer progression. Furthermore, human sequence data reveals that the A20 locus contains ~ 400 non-synonymous coding variants, which are largely uncharacterised. The growing number of A20 coding variants with unknown function, but potential clinical impact, poses a challenge to traditional mouse-based approaches.
View Article and Find Full Text PDFHistone deacetylases (HDACs) are enzymes that play a key role in regulating gene expression by remodeling chromatin structure. An imbalance of histone acetylation caused by deregulated HDAC expression and activity is known to promote tumor progression in a number of tumor types, including neuroblastoma, the most common solid tumor in children. Consequently, the inhibition of HDACs has emerged as a potential strategy to reverse these aberrant epigenetic changes, and several classes of HDAC inhibitors (HDACi) have been shown to inhibit tumor proliferation, or induce differentiation, apoptosis and cell cycle arrest in neuroblastoma.
View Article and Find Full Text PDFMYO18B loss-of-function mutations and depletion significantly compromise the structural integrity of striated muscle sarcomeres. The molecular function of the encoded protein, myosin-18B (M18B), within the developing muscle is unknown. Here, we demonstrate that recombinant M18B lacks motor ATPase activity and harbors previously uncharacterized N-terminal actin-binding domains, properties that make M18B an efficient actin cross-linker and molecular brake capable of regulating muscle myosin-2 contractile forces.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2020
The MEKK1 protein is a pivotal kinase activator of responses to cellular stress. Activation of MEKK1 can trigger various responses, including mitogen-activated protein (MAP) kinases, NF-κB signaling, or cell migration. Notably, MEKK1 activity is triggered by microtubule-targeting chemotherapies, among other stressors.
View Article and Find Full Text PDFThe identification of clinically viable strategies for overcoming resistance to platinum chemotherapy in lung adenocarcinoma has previously been hampered by inappropriately tailored in vitro assays of drug response. Therefore, using a pulse model that closely mimics the in vivo pharmacokinetics of platinum therapy, we profiled cisplatin-induced signalling, DNA-damage and apoptotic responses across a panel of human lung adenocarcinoma cell lines. By coupling this data to real-time, single-cell imaging of cell cycle and apoptosis we provide a fine-grained stratification of response, where a P70S6K-mediated signalling axis promotes resistance on a wildtype or null background, but not a mutant background.
View Article and Find Full Text PDFIn microorganisms, evolutionarily conserved mechanisms facilitate adaptation to harsh conditions through stress-induced mutagenesis (SIM). Analogous processes may underpin progression and therapeutic failure in human cancer. We describe SIM in multiple in vitro and in vivo models of human cancers under nongenotoxic drug selection, paradoxically enhancing adaptation at a competing intrinsic fitness cost.
View Article and Find Full Text PDFAs our ability to provide in-depth, patient-specific characterisation of the molecular alterations within tumours rapidly improves, it is becoming apparent that new approaches will be required to leverage the power of this data and derive the full benefit for each individual patient. Systems biology approaches are beginning to emerge within this field as a potential method of incorporating large volumes of network level data and distilling a coherent, clinically-relevant prediction of drug response. However, the initial promise of this developing field is yet to be realised.
View Article and Find Full Text PDF