Publications by authors named "David Crisante"

Rising concerns about climate change and sustainable energy have attracted efforts towards developing environmentally friendly alternatives to fossil fuels. Biosynthesis of n-butane, a highly desirable petro-chemical, fuel additive and diluent in the oil industry, remains a challenge. In this work, we first engineered enzymes Tes, Car and AD in the termination module to improve the selectivity of n-butane biosynthesis, and ancestral reconstruction and a synthetic RBS significantly improved the AD abundance.

View Article and Find Full Text PDF

ARC2 is a synthetic compound, related in structure and mechanism to the antibiotic triclosan, that activates the production of many specialized metabolites in the genus of bacteria. In this work, we demonstrate that the addition of ARC2 to cultures results in considerable alterations in overall gene expression including most notably the specialized metabolic genes. Using actinorhodin production as a model system, we show that the effect of ARC2 depends on the pleiotropic regulators and but not .

View Article and Find Full Text PDF

Synthetic biology is enabling rapid advances in the areas of biomanufacturing and live therapeutics. Dynamic circuits that can be used to regulate cellular resources and microbial community behavior represent a defining focus of synthetic biology, and have attracted tremendous interest. However, the existing dynamic circuits are mostly gene editing-dependent or cell lysis-based, which limits their broad and convenient application, and in some cases, such lysis-based circuits can suffer from genetic instability due to evolution.

View Article and Find Full Text PDF

Bacterial dormancy can take many forms, including formation of endospores, exospores, and metabolically latent cells. In the actinobacteria, including the streptomycetes and mycobacteria, the rapid resuscitation from a dormant state requires the activities of a family of cell-wall lytic enzymes called resuscitation-promoting factors (Rpfs). Whether Rpf activity promotes resuscitation by generating peptidoglycan fragments (muropeptides) that function as signaling molecules for spore germination or by simply remodeling the dormant cell wall has been the subject of much debate.

View Article and Find Full Text PDF