Transpeptidases are specialized enzymes that have evolved for site-selective modification of peptides and proteins at their backbone termini. Approaches for adapting transpeptidases to catalyze side chain modifications are substantially more restricted, and typically rely on large recognition tags or require specific reaction conditions that are not easily compatible with broader applications. Here we show that the engineered asparaginyl ligase AEP1 catalyzes direct isopeptide ligation by accepting an internal 2,3-diaminopropionic acid (Dap) residue adjacent to Leu, a motif that mimics the canonical N-terminal Gly-Leu substrate.
View Article and Find Full Text PDFThe devastating impact of malaria includes significant mortality and illness worldwide. Increasing resistance of the causative parasite, Plasmodium, to existing antimalarial drugs underscores a need for additional compounds with distinct modes of action in the therapeutic development pipeline. Here we showcase peptide-drug conjugates (PDCs) as an attractive compound class, in which therapeutic or lead antimalarials are chemically conjugated to cell-penetrating peptides.
View Article and Find Full Text PDFThis study describes the design, production, and characterization of a novel conditional intein system for the recombinant production of cyclic peptides. The system is based on two key features: (1) a promiscuous extein recognition site allowing cyclization of virtually any peptide, and (2) a secondary split site within the intein itself enabling triggered splicing at will. Two intein precursors were recombinantly expressed, purified, and then self-assembled in vitro to cyclize the model peptide kalata B1 (kB1).
View Article and Find Full Text PDFHuman kinases are recognized as one of the most important drug targets associated with cancer. There are >80 FDA-approved kinase inhibitors to date, most of which work by inhibiting ATP binding to the kinase. However, the frequent development of single-point mutations within the kinase domain has made overcoming drug resistance a major challenge in drug discovery today.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
November 2024
Background: Resistant infectious diseases caused by gram-negative bacteria are among the most serious worldwide health problems. Antimicrobial peptides (AMPs) have been explored as promising antibacterial, antibiofilm, and anti-infective candidates to address these health challenges.
Major Conclusions: Here we report the potent antibacterial effect of the peptide PaDBS1R6 on clinical bacterial isolates and identify an immunomodulatory peptide fragment incorporated within it.
The legume albumin-1 gene family, arising after nodulation, encodes linear a- and b-chain peptides for nutrient storage and defense. Intriguingly, in one prominent legume, Clitoria ternatea, the b-chains are replaced by domains producing ultra-stable cyclic peptides called cyclotides. The mechanism of this gene hijacking is until now unknown.
View Article and Find Full Text PDFThe control of malaria, a disease caused by parasites that kills over half a million people every year, is threatened by the continual emergence and spread of drug resistance. Therefore, new molecules with different mechanisms of action are needed in the antimalarial drug development pipeline. Peptides developed from host defense molecules are gaining traction as anti-infectives due to theood of inducing drug resistance.
View Article and Find Full Text PDFAcquired drug resistance is the major cause for disease recurrence in cancer patients, and this is particularly true for patients with metastatic melanoma that carry a BRAF mutation. To address this problem, we investigated cyclic membrane-active peptides as an alternative therapeutic modality to kill drug-tolerant and resistant melanoma cells to avoid acquired drug resistance. We selected two stable cyclic peptides (cTI and cGm), previously shown to have anti-melanoma properties, and compared them with dabrafenib, a drug used to treat cancer patients with the BRAF mutation.
View Article and Find Full Text PDFVoltage-gated sodium (Na) channels are intimately involved in the generation and transmission of action potentials, and dysfunction of these channels may contribute to nervous system diseases, such as epilepsy, neuropathic pain, psychosis, autism, and cardiac arrhythmia. Many venom peptides selectively act on Na channels. These include conotoxins, which are neurotoxins secreted by cone snails for prey capture or self-defense but which are also valuable pharmacological tools for the identification and/or treatment of human diseases.
View Article and Find Full Text PDFCyclotides are a diverse class of plant-derived cyclic, disulfide-rich peptides with a unique cyclic cystine knot topology. Their remarkable structural stability and resistance to proteolytic degradation can lead to improved pharmacokinetics and oral activity as well as selectivity and high enzymatic stability. Thus, cyclotides have emerged as powerful scaffold molecules for designing peptide-based therapeutics.
View Article and Find Full Text PDFThe spike-protein of SARS-CoV-2 has a distinctive amino-acid sequence (RRARS) that forms a cleavage site for the enzyme furin. Strikingly, the structure of the spike-protein loop containing the furin cleavage site bears substantial similarity to neurotoxin peptides found in the venoms of certain snakes and marine cone snails. Leveraging this relationship, we designed and synthesized disulfide-constrained peptides with amino-acid sequences corresponding to the furin cleavage-sites of wild-type (B.
View Article and Find Full Text PDFTranspeptidases are powerful tools for protein engineering but are largely restricted to acting at protein backbone termini. Alternative enzymatic approaches for internal protein labelling require bulky recognition motifs or non-proteinogenic reaction partners, potentially restricting which proteins can be modified or the types of modification that can be installed. Here we report a strategy for labelling lysine side chain ε-amines by repurposing an engineered asparaginyl ligase, which naturally catalyses peptide head-to-tail cyclization, for versatile isopeptide ligations that are compatible with peptidic substrates.
View Article and Find Full Text PDFThe two most active disulfide bond isomers of the analgesic αO-conotoxin GeXIVA, namely GeXIVA[1, 2] and GeXIVA[1, 4], were subjected to Asp-scanning mutagenesis to determine the key amino acid residues for activity at the rat α9α10 nicotinic acetylcholine receptor (nAChR). These studies revealed the key role of arginine residues for the activity of GeXIVA isomers towards the α9α10 nAChR. Based on these results, additional analogues with 2-4 mutations were designed and tested.
View Article and Find Full Text PDFCyclotides are cysteine-rich plant-derived peptides composed of 28-37 amino acids with a head-to-tail cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Their beneficial biophysical properties make them promising molecules for pharmaceutical and agricultural applications. The Violaceae plant family is the major cyclotide-producing family, and to date, every examined plant from this family has been found to contain cyclotides.
View Article and Find Full Text PDFAnimals are influenced by the season, yet we know little about the changes that occur in most species throughout the year. This is particularly true in tropical marine animals that experience relatively small annual temperature and daylight changes. Like many coral reef inhabitants, the crown-of-thorns starfish (COTS), well known as a notorious consumer of corals and destroyer of coral reefs, reproduces exclusively in the summer.
View Article and Find Full Text PDFCyclotides are cyclic peptides that are promising scaffolds for the design of drug candidates and chemical tools. However, despite there being hundreds of reported cyclotides, drug design studies have commonly focussed on a select few prototypic examples. Here, we explored whether ancestral sequence reconstruction could be used to generate new cyclotides for further optimization.
View Article and Find Full Text PDFTranspeptidases are powerful tools for site-specific protein modification, enabling the production of tailored biologics to investigate protein function and aiding the development of next-generation therapeutics and diagnostics. Although protein labelling at the N- or C-terminus is readily accomplished using a range of established transpeptidases, these reactions are generally limited to forming products that are linked by a standard (secondary) amide bond. Here we show that, unlike other widely used transpeptidases, an engineered asparaginyl ligase is able to efficiently synthesise tertiary amide bonds by accepting diverse secondary amine nucleophiles.
View Article and Find Full Text PDFCyclotides are plant-derived peptides characterized by a head-to-tail cyclic backbone and a cystine knot motif comprised of three disulfide bonds. Formation of this motif via in vitro oxidative folding can be challenging and can result in misfolded isomers with nonnative disulfide connectivities. Here, we investigated the effect of β-turn nucleation on cyclotide oxidative folding.
View Article and Find Full Text PDFTopological transformations and permutations of proteins have attracted significant interest as strategies to generate new protein functionalities or stability. These efforts have mainly been inspired by naturally occurring post-translational modifications, such as head-to-tail cyclization, circular permutation, or lasso-like entanglement. Such approaches can be realized experimentally via genetic encoding, in the case of circular permutation, or via enzymatic processing, in the case of cyclization.
View Article and Find Full Text PDFCyclotides are plant-derived disulfide-rich cyclic peptides that have a natural function in plant defense and potential for use as agricultural pesticides. Because of their highly constrained topology, they are highly resistant to thermal, chemical, or enzymatic degradation. However, the stability of cyclotides at alkaline pH for incubation times of longer than a few days is poorly studied but important since these conditions could be encountered in the environment, during storage or field application as insecticides.
View Article and Find Full Text PDFKalata B1 (kB1), a naturally occurring cyclotide has been shown experimentally to bind lipid membranes that contain phosphatidylethanolamine (PE) phospholipids. Here, molecular dynamics simulations were used to explore its interaction with two phospholipids, palmitoyloleoylphosphatidylethanolamine (POPE), palmitoyloleoylphosphatidylcholine (POPC), and a heterogeneous membrane comprising POPC/POPE (90:10), to understand the basis for the selectivity of kB1 towards PE phospholipids. The simulations showed that in the presence of only 10 % POPE lipid, kB1 forms a stable binding complex with membrane bilayers.
View Article and Find Full Text PDFPeptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective.
View Article and Find Full Text PDF