Publications by authors named "David Coulas"

A review of recent progress in the use of infrared femtosecond lasers to fabricate optical fiber sensors that incorporate fiber Bragg gratings (FBG) and random fiber gratings (RFG) is presented. The important advancements in femtosecond laser writing based on the phase mask technique now allow through-the-coating (TTC) fabrication of Bragg gratings in ultra-thin fiber filaments, tilted fiber Bragg gratings, and 1000 °C-resistant fiber Bragg gratings with very strong cladding modes. As an example, through-the-coating femtosecond laser writing is used to manufacture distributed fiber Bragg grating sensor arrays for oil pipeline leak detection.

View Article and Find Full Text PDF

The femtosecond laser-induced fiber Bragg grating is an effective sensor technology that can be deployed in harsh environments. Depending on the optical fiber chosen and the inscription parameters that are used, devices suitable for high temperature, pressure, ionizing radiation and strain sensor applications are possible. Such devices are appropriate for aerospace or energy production applications where there is a need for components, instrumentation and controls that can function in harsh environments.

View Article and Find Full Text PDF

Periodic planar nanostructures are found in Type II-IR Bragg gratings produced in SMF-28 fiber by side-illuminating it with infrared femtosecond-laser pulses through a phase mask. The planar nanostructures are aligned perpendicular to the laser polarization, as demonstrated using scanning electron microscopy analysis of cleaved fiber samples. Dark field optical microscopy is employed for real-time monitoring of structural changes occurring inside the fiber during the inscription process.

View Article and Find Full Text PDF