Eph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated.
View Article and Find Full Text PDFEph receptor tyrosine kinases participate in a variety of normal and pathogenic processes during development and throughout adulthood. This versatility is likely facilitated by the ability of Eph receptors to signal through diverse cellular signalling pathways: primarily by controlling cytoskeletal dynamics, but also by regulating cellular growth, proliferation, and survival. Despite many proteins linked to these signalling pathways interacting with Eph receptors, the specific mechanisms behind such links and their coordination remain to be elucidated.
View Article and Find Full Text PDFThe combination of androgen receptor antagonists with histone deacetylase inhibitors (HDACi) has been shown to be more effective than antiandrogens alone in halting growth of prostate cancer cell lines. Here we have designed, synthesized and assessed a series of antiandrogen/HDACi hybrids by combining structural features of enzalutamide with either SAHA or entinostat. The hybrids are demonstrated to maintain bifunctionality using a fluorometric HDAC assay and a bioluminescence resonance energy transfer (BRET) antiandrogen assay.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
February 2021
Nur77 (NGFI-B) is a nuclear receptor that belongs to the Nr4a family of orphan nuclear receptors (Nr4a1). This transcription factor has been implicated in the regulation of multiple functions, such as cell cycle regulation, apoptosis, inflammation, glucose and lipid metabolism, and brain function. However, the mechanisms involved in its different regulatory properties remain unclear.
View Article and Find Full Text PDFHybrid antiestrogen/histone deacetylase (HDAC) inhibitors were designed by appending zinc binding groups to the 4-hydroxystilbene core of 4-hydroxytamoxifen. The resulting hybrids were fully bifunctional, and displayed high nanomolar to low micromolar IC values against both the estrogen receptor α (ERα) and HDACs in vitro and in cell-based assays. The hybrids were antiproliferative against ER+ MCF-7 breast cancer cells, with hybrid 28b possessing an improved activity profile compared to either 4-hydroxytamoxifen or SAHA.
View Article and Find Full Text PDFThere is currently an unmet need for versatile techniques to monitor the assembly and dynamics of ternary complexes in live cells. Here we describe bioluminescence resonance energy transfer with fluorescence enhancement by combined transfer (BRETFect), a high-throughput technique that enables robust spectrometric detection of ternary protein complexes based on increased energy transfer from a luciferase to a fluorescent acceptor in the presence of a fluorescent intermediate. Its unique donor-intermediate-acceptor relay system is designed so that the acceptor can receive energy either directly from the donor or indirectly via the intermediate in a combined transfer, taking advantage of the entire luciferase emission spectrum.
View Article and Find Full Text PDFThe combination of antiestrogens and histone deacetylase inhibitors (HDACi) has been found to be antiproliferative in breast cancer models. We designed and synthesized hybrid structures which combined structural features of the pure antiestrogen ICI-164,384 and HDACi's SAHA and entinostat in a single bifunctional molecule. The hybrids retained antiestrogenic and HDACi activity and, in the case of benzamide hybrids, were selective for Class I HDAC3 over Class II HDAC6.
View Article and Find Full Text PDFRetinoid X receptors (RXRs) play a role as master regulators because of their capacity to form heterodimers with other nuclear receptors (NRs). Accordingly, retinoid signaling is involved in multiple biologic processes, including development, cell differentiation, metabolism, and cell death. However, the role and function of RXRs in different heterodimer complexes remain unidentified, mainly because most RXR drugs (called rexinoids) are not selective of specific heterodimer complexes.
View Article and Find Full Text PDFMol Cell Endocrinol
March 2011
Nuclear receptors (NRs) are ligand-dependent transcription factors with important roles in normal development and physiology and in a wide array of pathologies. While identification of natural or synthetic ligands for all human NRs has clarified their physiological roles and led to numerous therapeutic applications, much remains to be understood about the mechanisms by which NRs control transcription of specific networks of target genes. The DNA binding domain, composed of two C4 type zinc fingers, is the most conserved region in NRs.
View Article and Find Full Text PDFThe basis for the differential repressive effects of antiestrogens on transactivation by estrogen receptor-alpha (ERalpha) remains incompletely understood. Here, we show that the full antiestrogen ICI182,780 and, to a lesser extent, the selective ER modulator raloxifene (Ral), induce accumulation of exogenous ERalpha in a poorly soluble fraction in transiently transfected HepG2 or stably transfected MDA-MB231 cells and of endogenous receptor in MCF7 cells. ERalpha remained nuclear in HepG2 cells treated with either compound.
View Article and Find Full Text PDF