Artificial Intelligence (AI) is an emerging tool that could be leveraged to identify the effective conservation solutions demanded by the urgent biodiversity crisis. We present the results of our horizon scan of AI applications likely to significantly benefit biological conservation. An international panel of conservation scientists and AI experts identified 21 key ideas.
View Article and Find Full Text PDFTropical cyclones (TCs) sporadically cause extensive damage to forests. However, little is known about how TCs affect forest dynamics in mountainous terrain, due to difficulties in modelling wind flows and quantifying structural changes. Typhoon Mangkhut (2018) was the strongest TC to strike Hong Kong in over 40 yr, with gusts > 250 km h.
View Article and Find Full Text PDFTree growth-survival relationships link two demographic processes that individually dictate the composition, structure and functioning of forest ecosystems. While these relationships vary intra-specifically, it remains unclear how this reflects environmental variation and disturbance. We examined the influence of a 700-m elevation gradient and an = 6.
View Article and Find Full Text PDFIn tropical forests, trees strategically balance growth patterns to optimise fitness amid multiple environmental stressors. Wind poses the primary risk to a tree's mechanical stability, prompting developments such as thicker trunks to withstand the bending forces. Therefore, a trade-off in resource allocation exists between diameter growth and vertical growth to compete for light.
View Article and Find Full Text PDFBackground: Validated biomarkers could catalyze environmental enteric dysfunction (EED) research.
Objectives: Leveraging an EED histology scoring system, this multicountry analysis examined biomarker associations with duodenal histology features among children with EED. We also examined differences in 2-h compared with 1-h urine collections in the lactulose rhamnose (LR) dual sugar test.
Background: Environmental enteric dysfunction (EED) is an inflammatory condition of the small intestine that is prevalent in children residing in low- and middle-income countries. EED is accompanied by profound histopathologic changes in the small bowel, loss of absorptive capacity, increased intestinal permeability, increased microbial translocation, and nutrient loss.
Objectives: We sought to identify dysregulated genes and pathways that might underlie pediatric EED.
Merkel cell carcinoma (MCC) is a rare and aggressive neuroendocrine tumor of the skin. Risk factors include extensive sun damage, infection with Merkel cell polyomavirus, and an immunocompromised state. PRAME, also known as preferentially expressed antigen in melanoma, is a cancer-testis antigen recently found to be a useful diagnostic tool in the workup of melanocytic neoplasms.
View Article and Find Full Text PDFBackground: Environmental enteric dysfunction (EED), a chronic inflammatory condition of the small intestine, is an important driver of childhood malnutrition globally. Quantifying intestinal morphology in EED allows for exploration of its association with functional and disease outcomes.
Objectives: We sought to define morphometric characteristics of childhood EED and determine whether morphology features were associated with disease pathophysiology.
Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.
View Article and Find Full Text PDFForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system. Remote-sensing estimates to quantify carbon losses from global forests are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced and satellite-derived approaches to evaluate the scale of the global forest carbon potential outside agricultural and urban lands.
View Article and Find Full Text PDFUnderstanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records.
View Article and Find Full Text PDFDetermining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies. Here, leveraging global tree databases, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity.
View Article and Find Full Text PDFThe United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear. Unregulated hunting can empty PAs of large animals, illegal tree felling can degrade habitat quality, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape (a phenomenon called leakage).
View Article and Find Full Text PDFAlthough eco-acoustic monitoring has the potential to deliver biodiversity insight on vast scales, existing analytical approaches behave unpredictably across studies. We collated 8,023 audio recordings with paired manual avifaunal point counts to investigate whether soundscapes could be used to monitor biodiversity across diverse ecosystems. We found that neither univariate indices nor machine learning models were predictive of species richness across datasets but soundscape change was consistently indicative of community change.
View Article and Find Full Text PDFHere we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca.
View Article and Find Full Text PDF