Publications by authors named "David Cookson"

A series of siloxane poly(urethane-urea) (SiPUU) were developed by incorporating a macrodiol linked with a diisocyanate to enhance mixing of hard and soft segments (SS). The effect of this modification on morphology, surface properties, surface elemental composition, and creep resistance was investigated. The linked macrodiol was prepared by reacting α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane)(PDMS) or poly(hexamethylene oxide) (PHMO) with either 4,4'-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), or isophorone diisocyanate (IPDI).

View Article and Find Full Text PDF

A novel, pure, synthetic material is presented that promotes the repair of full-thickness skin wounds. The active component is tropoelastin and leverages its ability to promote new blood vessel formation and its cell recruiting properties to accelerate wound repair. Key to the technology is the use of a novel heat-based, stabilized form of human tropoelastin which allows for tunable resorption.

View Article and Find Full Text PDF

Scaffold biomaterials are typically applied surgically as reinforcement for weakened or damaged tissue, acting as substrates on which healing tissue can grow. Natural extracellular matrix (ECM) materials consisting mainly of collagen are often used for this purpose, but are anisotropic. Ovine forestomach matrix (OFM) ECM was exposed to increasing strain and synchrotron-based SAXS diffraction patterns and revealed that the collagen fibrils within underwent changes in orientation, orientation index (a measure of isotropy), and extension.

View Article and Find Full Text PDF

The formation of nanobubbles on hydrophobic self-assembled monolayers has been examined in a binary ethanol/water titration using small angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The AFM data demonstrates a localized force effect attributed to nanobubbles on an immersed hydrophobic surface. This evidence is arguably compromised by the possibility that the AFM tip actually nucleates nanobubbles.

View Article and Find Full Text PDF

SAXS has been applied to structural determination in leather. The SAXS beamline at the Australian Synchrotron provides 6 orders of magnitude dynamic range, enabling a rich source of structural information from scattering patterns of leather sections. SAXS patterns were recorded for q from 0.

View Article and Find Full Text PDF

A modified Drickamer anvil apparatus has been developed to combine with monochromatic synchrotron radiation for high-pressure X-ray diffraction and radiography in the GSECARS bending-magnet station, 13-BM-D, at the Advanced Photon Source, Argonne, USA. Using this experimental set-up, deformation experiments can be carried out at pressures in excess of 30 GPa at high temperatures. Differential stresses and total axial strains of polycrystalline platinum and Mg(2)SiO(4) ringwoodite have been measured up to 32 GPa at room temperature using tungsten carbide anvils.

View Article and Find Full Text PDF

The morphology, particle size distribution and cluster structure of the hydrated iron(III) oxyhydroxide particles associated with haemosiderin and ferritin in dietary iron-loaded rat liver tissue have been investigated using transmission electron microscopy (TEM) and anomalous small-angle x-ray scattering (ASAXS). Rat liver tissue was removed from a series of female Porton rats which had been fed an iron-rich diet until sacrifice at various ages from 2-24 months. Hepatic iron concentrations ranged from 1 to 65 mg Fe g(-1) dry tissue.

View Article and Find Full Text PDF

We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions.

View Article and Find Full Text PDF

The inverse hexagonal to inverse ribbon phase transition in a mixed phosphatidylcholine-phosphatidylethanolamine system at low hydration is studied using small and wide angle X-ray scattering. It is found that the structural parameters of the inverse hexagonal phase are independent of temperature. By contrast the length of each ribbon of the inverse ribbon phase increases continuously with decreasing temperature over a range of 50 degrees C.

View Article and Find Full Text PDF

The early stages of evaporation induced self-assembly of titanium oxide mesophases from a precursor solution containing TiCl4 and the Pluronic triblock copolymer F-127 in HCl-water-ethanol solution have been studied using time-resolved SAXS techniques. Two experimental protocols were used to conduct these experiments. In one of these, the precursor solution was pumped around a closed loop as solvent was allowed to evaporate at a constant humidity-controlled rate.

View Article and Find Full Text PDF

Proresilin is the precursor protein for resilin, an extremely elastic, hydrated, cross-linked insoluble protein found in insects. We investigated the secondary-structure distribution in solution of a synthetic proresilin (AN16), based on 16 units of the consensus proresilin repeat from Anopheles gambiae. Raman spectroscopy was used to verify that the secondary-structure distributions in cross-linked AN16 resilin and in AN16 proresilin are similar, and hence that solution techniques (such as NMR and circular dichroism) may be used to gain information about the structure of the cross-linked solid.

View Article and Find Full Text PDF

Cortactin is a filamentous actin-binding protein that plays a pivotal role in translating environmental signals into coordinated rearrangement of the cytoskeleton. The dynamic reorganization of actin in the cytoskeleton drives processes including changes in cell morphology, cell migration, and phagocytosis. In general, structural proteins of the cytoskeleton bind in the N-terminal region of cortactin and regulatory proteins in the C-terminal region.

View Article and Find Full Text PDF

We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes.

View Article and Find Full Text PDF

Within a polymer film, free-volume elements such as pores and channels typically have a wide range of sizes and topologies. This broad range of free-volume element sizes compromises a polymer's ability to perform molecular separations. We demonstrated free-volume structures in dense vitreous polymers that enable outstanding molecular and ionic transport and separation performance that surpasses the limits of conventional polymers.

View Article and Find Full Text PDF

Undulator X-ray sources on third-generation synchrotrons have pushed small-angle X-ray scattering (SAXS) to the forefront of techniques in nanoscience and technology. With higher X-ray fluxes and improved focusing, it is usually the scattered intensity detector that places the most serious limitations on the overall capabilities of the instrument. Incorporating relatively simple components like point detectors, scattering standards, masking filters and in-line sample visualization into the flight tube of a pinhole-geometry SAXS camera can do much to mitigate these limitations.

View Article and Find Full Text PDF

Peptide nucleic acid amphiphiles (PNAA) are a promising set of materials for sequence-specific separation of nucleic acids from complex mixtures. To implement PNAA in micellar separations, the morphology and size of PNAA micelles in the presence and absence of a sodium dodecyl sulfate (SDS) cosurfactant have been studied by small-angle X-ray scattering and dynamic light scattering. We find that a 6-mer PNAA with a 12-carbon n-alkane tail forms ellipsoidal micelles (a = 5.

View Article and Find Full Text PDF

Bone and dentin biomineralization are well-regulated processes mediated by extracellular matrix proteins. It is widely believed that specific matrix proteins in these tissues modulate nucleation of apatite nanoparticles and their growth into micrometer-sized crystals via molecular recognition at the protein-mineral interface. However, this assumption has been supported only circumstantially, and the exact mechanism remains unknown.

View Article and Find Full Text PDF

Phosphoproteins of the organic matrix of bone and dentin have been implicated as regulators of the nucleation and growth of the inorganic Ca-P crystals of vertebrate bones and teeth. One such protein identified in the dentin matrix is phosphophoryn (PP). It is highly acidic in nature because of a high content of aspartic acid and phosphate groups on serines.

View Article and Find Full Text PDF

The self-assembly of nanoparticles at fluid interfaces, driven by the reduction in interfacial energy, was investigated. With spherical, tri-n-octyl-phosphine-oxide covered cadmium selenide (CdSe) nanoparticles (1-8 nm), thermal fluctuations compete with the interfacial segregation giving rise to a size-dependent self-assembly of the particles. The structure of the nanoparticle assembly was studied using electron microscopy, atomic force microscopy, and X-ray scattering in situ, which indicate that the particles form a densely packed monolayer.

View Article and Find Full Text PDF

The first ever time-resolved small-angle X-ray scattering (SAXS) data from the undulator 15-ID-D beamline (ChemMatCARS) are presented. A 1.3 A (9.

View Article and Find Full Text PDF