The use of nicotinamide cofactors in cell-free biocatalytic systems is necessitated by the high specificity that these enzymes show for their natural redox mediators. Unfortunately, isolation and use of natural cofactors is costly, which suggests that enhancing their stability is key to enabling their use in industrial processes. This study details NAD and NADH stability in three buffer systems (sodium phosphate, HEPES, and Tris) at 19 °C and 25 °C and for up to 43 d.
View Article and Find Full Text PDFAn electrochemical immunoassay for interleukin-6 (IL-6) was developed based on IL-6 capture using magnetic beads and electrochemical signal production using horseradish peroxidase/tetramethylbenzidine. We achieved IL-6 detection from the 50-1000 pg mL range, which is a physiologically relevant IL-6 range for a variety of biological systems. The sandwich assay performed well in phosphate buffered solution as well as in cellular media and human plasma spiked with IL-6, and decreased time to IL-6 concentration readout to approximately one hour.
View Article and Find Full Text PDFIntroduction: Rupture of the gestational membranes often precedes major pregnancy complications, including preterm labor and preterm birth. One major cause of inflammation in the gestational membranes, chorioamnionitis (CAM) is often a result of bacterial infection. The commensal bacterium , or Group B (GBS) is a leading infectious cause of CAM.
View Article and Find Full Text PDFPhotosystem I (PSI) is an intrinsically photoactive multi-subunit protein that is found in higher order photosynthetic organisms. PSI is a promising candidate for renewable biohybrid energy applications due to its abundance in nature and its high quantum yield. To utilize PSI's light-responsive properties and to overcome its innate electrically insulating nature, the protein can be paired with a biologically compatible conducting polymer that carries charge at appropriate energy levels, allowing excited PSI electrons to travel within a composite network upon light excitation.
View Article and Find Full Text PDFis a strongly blue-bruising psilocybin mushroom used by indigenous groups in southeastern Mexico and beyond. While this species has a rich history of ceremonial use, research into its chemistry and genetics have been limited. Herein, we detail mushroom morphology and report on cultivation parameters, chemical profile, and the full genome sequence of .
View Article and Find Full Text PDFThe combination of conducting polymers with electro- and photoactive proteins into thin films holds promise for advanced energy conversion materials and devices. The emerging field of protein electronics requires conductive soft materials in a composite with electrically insulating proteins. The electropolymerization of pyrrole through voids in a drop-casted photosystem I (PSI) multilayer film enables the straightforward fabrication of photoactive and conductive biohybrid films.
View Article and Find Full Text PDFOne of the main barriers to making efficient Photosystem I-based biohybrid solar cells is the need for an electrochemical pathway to facilitate electron transfer between the P reaction center of Photosystem I and an electrode. To this end, nature provides inspiration in the form of cytochrome c, a natural electron donor to the P site. Its natural ability to access the P binding pocket and reduce the reaction center can be mimicked by employing cytochrome c, which has a similar protein structure and redox chemistry while also being compatible with a variety of electrode surfaces.
View Article and Find Full Text PDFThis paper investigates the electrochemical behavior of -aminophenol (PAP) on commercially available carbon screen-printed electrodes (CSPEs) and gold screen-printed electrodes (GSPEs) at neutral and basic pHs for the development of inexpensive immunoassays. The electrochemical oxidative signal from PAP results from its adsorption to the electrode. The formation of self-assembled monolayers on gold electrodes prevented PAP adsorption but also reduced its oxidative current, confirming that adsorption increases signal production.
View Article and Find Full Text PDFElevated levels of circulating cell-free hemoglobin (CFH) are an integral feature of several clinical conditions including sickle cell anemia, sepsis, hemodialysis and cardiopulmonary bypass. Oxidized (Fe, ferric) hemoglobin contributes to the pathophysiology of these disease states and is therefore widely studied in experimental models, many of which use commercially sourced CFH. In this study, we treated human endothelial cells with commercially sourced ferric hemoglobin and observed the appearance of dense cytoplasmic aggregates (CAgg) over time.
View Article and Find Full Text PDFElectrochemical sensors that utilize enzymes are a sensitive, inexpensive means of detecting biologically relevant analytes. These sensors are categorized based on their construction and method of signal transport. Type I sensors consist of a crosslinked enzyme on an electrode surface and are potentially subject to interference from byproducts and other biological analytes.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2021
Despite the significant progress in both scientific understanding and regulations, the safety of agricultural pesticides continues to be called into question. The need for complementary analytics to identify dysregulation events associated with chemical exposure and leverage this information to predict biological responses remains. Here, we present a platform that combines a model organ-on-chip neurovascular unit (NVU) with targeted mass spectrometry (MS) and electrochemical analysis to assess the impact of organophosphate (OP) exposure on blood-brain barrier (BBB) function.
View Article and Find Full Text PDFThe design of electrode interfaces to achieve efficient electron transfer to biomolecules is important in many bioelectrochemical processes. Within the field of biohybrid solar energy conversion, constructing multilayered Photosystem I (PSI) protein films that maintain good electronic connection to an underlying electrode has been a major challenge. Previous shortcomings include low loadings, long deposition times, and poor connection between PSI and conducting polymers within composite films.
View Article and Find Full Text PDFThere is a need for valves and pumps that operate at the microscale with precision and accuracy, are versatile in their application, and are easily fabricated. To that end, we developed a new rotary planar multiport valve to faithfully select solutions (contamination = 5.22 ± 0.
View Article and Find Full Text PDFHere, we describe the surprising reactivity between surface-attached (a) 0.9, 1.6, and 4.
View Article and Find Full Text PDFElectrochemical sensors are used by millions of patients and health care providers every year, yet these measurements are hindered by compounds that also exhibit inherent redox activity. Acetaminophen (APAP) is one such interferent that falls into this extensive class. In this work, an osmium-based redox polymer was used for electrochemical detection in a sensor that was operated at a decreased voltage, allowing for decreased interference.
View Article and Find Full Text PDFThe photosystem I (PSI) protein complex is known to enhance bioelectrode performance for many liquid-based photoelectrochemical cells. A hydrogel as electrolyte media allows for simpler fabrication of more robust and practical solar cells in comparison to liquid-based devices. This paper reports a natural, gel-based dye-sensitized solar cell that integrates PSI to improve device efficiency.
View Article and Find Full Text PDFCarbon dots (CDs) are a rapidly progressing class of nanomaterial which show promise towards applications in solar energy conversion due to their low toxicity, favorable electrochemical properties, and tunability. In recent years there have been a number of reported CD syntheses, both top-down and bottom-up methods, producing a diverse range of CDs with intrinsic properties dependent on the starting materials and utilized dopants. This work presents a citrate buffer-facilitated synthesis of nitrogen-doped carbon dots (NCD) and explores the impact of urea concentration on observed electrochemical and optical properties.
View Article and Find Full Text PDFContinuous glucose monitor (CGM) readings are delayed relative to blood glucose, and this delay is usually attributed to the latency of interstitial glucose levels. However, CGM-independent data suggest rapid equilibration of interstitial glucose. This study sought to determine the loci of CGM delays.
View Article and Find Full Text PDFThe photosynthetic protein complex, photosystem I (PSI), can be photoexcited with a quantum efficiency approaching unity and can be integrated into solar energy conversion devices as the photoactive electrode. The incorporation of PSI into conducting polymer frameworks allows for improved conductivity and orientational control in the photoactive layer. Polyviologens are a unique class of organic polycationic polymers that can rapidly accept electrons from a primary donor such as photoexcited PSI and subsequently can donate them to a secondary acceptor.
View Article and Find Full Text PDFThe photosynthetic protein, photosystem I (PSI), has been used as a photoactive species within a host of biohybrid photoelectrochemical systems. PSI multilayer films at electrode surfaces provide greatly improved solar energy conversion relative to homologous monolayer films. While the photocatalytic effect of PSI multilayers has been theorized as an electrolyte-mediated mechanism, no comprehensive, first-principles modeling study has been presented.
View Article and Find Full Text PDFPreterm birth (PTB) is clinically defined as process of giving birth before 37 weeks of gestation and is a leading cause of death among neonates and children under the age of five. Prematurity remains a critical issue in developed countries, yet our understanding of the pathophysiology of PTB remains largely unknown. Among pregnancy complications, subclinical infections such as chorioamnionitis (CAM) are implicated in up to 70% of PTB cases.
View Article and Find Full Text PDFAtherogenesis is the narrowing of arteries due to plaque build-up that results in cardiovascular disease that can lead to death. The macrophage lectin-like oxidized LDL receptor-1 (LOX-1), also called the oxidized low-density lipoprotein receptor 1 (OLR1), is currently thought to aid in atherosclerotic disease progression; therefore metabolic studies have potential to both provide mechanistic validation for the role of LOX-1 in disease progression and provide valuable information regarding biomarker strategies and clinical imaging. One such mechanistic study is the upregulation of LOX-1 by methylated bacterial DNA and deoxy-cytidylate-phosphate-deoxy-guanylate-DNA (CpG)-DNA exposure.
View Article and Find Full Text PDFAdvances in scientific instrumentation have allowed experimentalists to evaluate well-known systems in new ways and to gain insight into previously unexplored or poorly understood phenomena. Within the growing field of multianalyte physiometry (MAP), microphysiometers are being developed that are capable of electrochemically measuring changes in the concentration of various metabolites in real time. By simultaneously quantifying multiple analytes, these devices have begun to unravel the complex pathways that govern biological responses to ischemia and oxidative stress while contributing to basic scientific discoveries in bioenergetics and neurology.
View Article and Find Full Text PDFThe ability to assess oxygenation within living cells is much sought after to more deeply understand normal and pathological cell biology. Hypoxia Red manufactured by Enzo Life Sciences is advertised as a novel hypoxia detector dependent on nitroreducatase activity. We sought to use Hypoxia Red in primary neuronal cultures to test cell-to-cell metabolic variability in response to hypoxic stress.
View Article and Find Full Text PDFGlobally, maternal and fetal health is greatly impacted by extraplacental inflammation. Group B Streptococcus (GBS), a leading cause of chorioamnionitis, is thought to take advantage of the uterine environment during pregnancy in order to cause inflammation and infection. In this study, we demonstrate the metabolic changes of murine macrophages caused by GBS exposure.
View Article and Find Full Text PDF