Publications by authors named "David Clausi"

In this paper, we address the hyperspectral image (HSI) classification task with a generative adversarial network and conditional random field (GAN-CRF)-based framework, which integrates a semisupervised deep learning and a probabilistic graphical model, and make three contributions. First, we design four types of convolutional and transposed convolutional layers that consider the characteristics of HSIs to help with extracting discriminative features from limited numbers of labeled HSI samples. Second, we construct semisupervised generative adversarial networks (GANs) to alleviate the shortage of training samples by adding labels to them and implicitly reconstructing real HSI data distribution through adversarial training.

View Article and Find Full Text PDF

In medical image analysis, registration of multimodal images has been challenging due to the complex intensity relationship between images. Classical multi-modal registration approaches evaluate the degree of the alignment by measuring the statistical dependency of the intensity values between images to be aligned. Employing statistical similarity measures, such as mutual information, is not promising in those cases with complex and spatially dependent intensity relations.

View Article and Find Full Text PDF

Cardiovascular monitoring is important to prevent diseases from progressing. The jugular venous pulse (JVP) waveform offers important clinical information about cardiac health, but is not routinely examined due to its invasive catheterisation procedure. Here, we demonstrate for the first time that the JVP can be consistently observed in a non-contact manner using a photoplethysmographic imaging system.

View Article and Find Full Text PDF

Photoplethysmographic imaging is an optical solution for non-contact cardiovascular monitoring from a distance. This camera-based technology enables physiological monitoring in situations where contact-based devices may be problematic or infeasible, such as ambulatory, sleep, and multi-individual monitoring. However, automatically extracting the blood pulse waveform signal is challenging due to the unknown mixture of relevant (pulsatile) and irrelevant pixels in the scene.

View Article and Find Full Text PDF

Photoplethysmographic imaging (PPGI) is a widefield noncontact biophotonic technology able to remotely monitor cardiovascular function over anatomical areas. Although spatial context can provide insight into physiologically relevant sampling locations, existing PPGI systems rely on coarse spatial averaging with no anatomical priors for assessing arterial pulsatility. Here, we developed a continuous probabilistic pulsatility model for importance-weighted blood pulse waveform extraction.

View Article and Find Full Text PDF

The simultaneous capture of imaging data at multiple wavelengths across the electromagnetic spectrum is highly challenging, requiring complex and costly multispectral image devices. In this study, we investigate the feasibility of simultaneous multispectral imaging using conventional image sensors with color filter arrays via a novel comprehensive framework for numerical demultiplexing of the color image sensor measurements. A numerical forward model characterizing the formation of sensor measurements from light spectra hitting the sensor is constructed based on a comprehensive spectral characterization of the sensor.

View Article and Find Full Text PDF

Photoplethysmography (PPG) devices are widely used for monitoring cardiovascular function. However, these devices require skin contact, which restricts their use to at-rest short-term monitoring. Photoplethysmographic imaging (PPGI) has been recently proposed as a non-contact monitoring alternative by measuring blood pulse signals across a spatial region of interest.

View Article and Find Full Text PDF

We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern.

View Article and Find Full Text PDF

Traditional methods for early detection of melanoma rely upon a dermatologist to visually assess a skin lesion using the ABCDE (Asymmetry, Border irregularity, Color variegation, Diameter, Evolution) criteria before confirmation can be done through biopsy by a pathologist. However, this visual assessment strategy taken by dermatologists is hampered by clinician subjectivity and suffers from low sensitivity. Computer-aided diagnostic methods based on dermatological photographs are being developed to aid in the melanoma diagnosis process, but most of these methods rely only on superficial, topographic features that can be limiting in characterizing melanoma.

View Article and Find Full Text PDF

Multi-modal image registration has been a challenging task in medical images because of the complex intensity relationship between images to be aligned. Registration methods often rely on the statistical intensity relationship between the images which suffers from problems such as statistical insufficiency. The proposed registration method works based on extracting structural features by utilizing the complex phase and gradient-based information.

View Article and Find Full Text PDF

The current diagnostic technique for melanoma solely relies on the surface level of skin and under-skin information is neglected. Since physiological features of skin such as melanin are closely related to development of melanoma, the non-linear physiological feature extraction model based on random forest regression is proposed. The proposed model characterizes the concentration of eumelanin and pheomelanin from standard camera images or dermoscopic images, which are conventionally used for diagnosis of melanoma.

View Article and Find Full Text PDF

A set of high-level intuitive features (HLIFs) is proposed to quantitatively describe melanoma in standard camera images. Melanoma is the deadliest form of skin cancer. With rising incidence rates and subjectivity in current clinical detection methods, there is a need for melanoma decision support systems.

View Article and Find Full Text PDF

Melanoma is the deadliest form of skin cancer. Incidence rates of melanoma have been increasing, especially among non-Hispanic white males and females, but survival rates are high if detected early. Due to the costs for dermatologists to screen every patient, there is a need for an automated system to assess a patient's risk of melanoma using images of their skin lesions captured using a standard digital camera.

View Article and Find Full Text PDF

Active contours are a popular approach for object segmentation that uses an energy minimizing spline to extract an object's boundary. Nonparametric approaches can be computationally complex, whereas parametric approaches can be impacted by parameter sensitivity. A decoupled active contour (DAC) overcomes these problems by decoupling the external and internal energies and optimizing them separately.

View Article and Find Full Text PDF

Spectral clustering methods have been shown to be effective for image segmentation. Unfortunately, the presence of image noise as well as textural characteristics can have a significant negative effect on the segmentation performance. To accommodate for image noise and textural characteristics, this study introduces the concept of sub-graph affinity, where each node in the primary graph is modeled as a sub-graph characterizing the neighborhood surrounding the node.

View Article and Find Full Text PDF

Despite continuous improvements in optical flow in the last three decades, the ability for optical flow algorithms to handle illumination variation is still an unsolved challenge. To improve the ability to interpret apparent object motion in video containing illumination variation, an illumination-robust optical flow method is designed. This method decouples brightness into reflectance and illumination components using a stochastic technique; reflectance is given higher weight to ensure robustness against illumination, which is suppressed.

View Article and Find Full Text PDF

The use of MRI for early breast examination and screening of asymptomatic women has become increasing popular, given its ability to provide detailed tissue characteristics that cannot be obtained using other imaging modalities such as mammography and ultrasound. Recent application-oriented developments in compressed sensing theory have shown that certain types of magnetic resonance images are inherently sparse in particular transform domains, and as such can be reconstructed with a high level of accuracy from highly undersampled k-space data below Nyquist sampling rates using homotopic L0 minimization schemes, which holds great potential for significantly reducing acquisition time. An important consideration in the use of such homotopic L0 minimization schemes is the choice of sparsifying transform.

View Article and Find Full Text PDF

High quality, large size volumetric imaging of biological tissue with optical coherence tomography (OCT) requires large number and high density of scans, which results in large data acquisition volume. This may lead to corruption of the data with motion artifacts related to natural motion of biological tissue, and could potentially cause conflicts with the maximum permissible exposure of biological tissue to optical radiation. Therefore, OCT can benefit greatly from different approaches to sparse or compressive sampling of the data where the signal is recovered from its sub-Nyquist measurements.

View Article and Find Full Text PDF

Melanoma is the most deadly form of skin cancer and it is costly for dermatologists to screen every patient for melanoma. There is a need for a system to assess the risk of melanoma based on dermatological photographs of a skin lesion. However, the presence of illumination variation in the photographs can have a negative impact on lesion segmentation and classification performance.

View Article and Find Full Text PDF

Feature extraction of skin lesions is necessary to provide automated tools for the detection of skin cancer. High-level intuitive features (HLIF) that measure border irregularity of skin lesion images obtained with standard cameras are presented. Existing feature sets have defined many low-level unintuitive features.

View Article and Find Full Text PDF

A novel saliency-guided approach is proposed for improving the acquisition speed of compressive fluorescence microscopy systems. By adaptively optimizing the sampling probability density based on regions of interest instead of the traditional unguided random sampling approach, the proposed saliency-guided compressive fluorescence microscopy approach can achieve high-quality microscopy images using less than half of the number of fluorescence microscopy data measurements required by existing compressive fluorescence microscopy systems to achieve the same level of quality.

View Article and Find Full Text PDF

A novel algorithm for correcting illumination variation in dermatological photographs via a multi-stage modeling of the underlying illumination is proposed for the purpose of skin lesion analysis. First, an initial illumination estimate is obtained via a non-parametric modeling strategy based on Monte Carlo sampling. Next, a subset of pixels from the non-parametric estimate is used to determine a parametric estimate of the illumination based on a quadratic surface model.

View Article and Find Full Text PDF

Compressive fluorescence microscopy has been proposed as a promising approach for fast acquisitions at sub-Nyquist sampling rates. Given that signal-to-noise ratio (SNR) is very important in the design of fluorescence microscopy systems, a new saliency-guided sparse reconstruction ensemble fusion system has been proposed for improving SNR in compressive fluorescence microscopy. This system produces an ensemble of sparse reconstructions using adaptively optimized probability density functions derived based on underlying saliency rather than the common uniform random sampling approach.

View Article and Find Full Text PDF

A novel automated cell counting technique for cell sample images used to study the side-effects of lens cleaning solutions on human corneal epithelial cells is developed. The proposed multi-step approach integrates non-maximum suppression, seeded region growing, connected component analysis, and adaptive thresholding to produce segmentation and classification results that are robust to background illumination variation and clustering of cells. The proposed algorithm is computationally efficient, and experimental results show that the average detection rate of nucleated cells is greater than 90% with the proposed technique as opposed to the state-of-the-art level set method which gives an accuracy of less than 65%.

View Article and Find Full Text PDF

The accurate detection of object boundaries via active contours is an ongoing research topic in computer vision. Most active contours converge toward some desired contour by minimizing a sum of internal (prior) and external (image measurement) energy terms. Such an approach is elegant, but suffers from a slow convergence rate and frequently misconverges in the presence of noise or complex contours.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1e493lf0sv8t7hp710kjh1797o9306dg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once