Publications by authors named "David Choong"

Most NUTM1-rearranged neoplasms (NRNs) have fusions between NUTM1 and BRD (bromodomain-containing) family members and are termed NUT carcinomas (NCs) because they show some squamous differentiation. However, some NRNs are associated with fusions between NUTM1 and members of the MAD (MAX dimerization) gene family of MYC antagonists. Here we describe a small round cell malignancy from the gastro-esophageal junction with a previously unreported fusion between NUTM1 and the MAD family member MXI1.

View Article and Find Full Text PDF

The transcription factor GLI1 is a critical effector of the sonic hedgehog pathway. Gene fusions that activate GLI1 have recently been reported in several tumor types including gastroblastoma, plexiform fibromyxoma, a subset of pericytomas, and other soft tissue tumors. These tumors arise in a wide variety of anatomical origins and have variable malignant potentials, morphologies, and immunohistochemistry profiles.

View Article and Find Full Text PDF

Tumor DNA sequencing results can have important clinical implications. However, its use is often limited by low DNA input, owing to small tumor biopsy size. To help overcome this limitation we have developed a simple improvement to a commonly used next-generation sequencing (NGS) capture-based library preparation method using formalin-fixed paraffin-embedded-derived tumor DNA.

View Article and Find Full Text PDF

BRAF and CRAF are critical components of the MAPK signaling pathway which is activated in many cancer types. In approximately 1% of melanomas, BRAF or CRAF are activated through structural arrangements. We describe here a metastatic melanoma with a GOLGA4-RAF1 fusion and pathogenic variants in CTNNB1 and CDKN2A.

View Article and Find Full Text PDF

Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) is a rare RCC subtype that is caused by biallelic mutation of one of the four subunits of the SDH complex (, , , and ) and results in inactivation of the SDH enzyme. Here we describe a case of genetically characterized SDH-deficient RCC caused by biallelic (germline plus somatic) mutations. pathogenic variants were detected using comprehensive genomic profiling and SDH absence was subsequently confirmed by immunohistochemistry.

View Article and Find Full Text PDF

The spectrum of genomic alterations in ductal carcinoma in situ (DCIS) is relatively unexplored, but is likely to provide useful insights into its biology, its progression to invasive carcinoma and the risk of recurrence. DCIS (n=20) with a range of phenotypes was assessed by massively parallel sequencing for mutations and copy number alterations and variants validated by Sanger sequencing. PIK3CA mutations were identified in 11/20 (55%), TP53 mutations in 6/20 (30%), and GATA3 mutations in 9/20 (45%).

View Article and Find Full Text PDF

Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer and a frequent mammographic finding requiring treatment. Up to 25% of DCIS can recur and half of recurrences are invasive, but there are no reliable biomarkers for recurrence. We hypothesised that copy number aberrations could predict likelihood of recurrence.

View Article and Find Full Text PDF

Background: Loss of heterozygosity (LOH) is a common genetic event in cancer development, and is known to be involved in the somatic loss of wild-type alleles in many inherited cancer syndromes. The wider involvement of LOH in cancer is assumed to relate to unmasking a somatically mutated tumour suppressor gene through loss of the wild type allele.

Methods: We analysed 86 ovarian carcinomas for mutations in 980 genes selected on the basis of their location in common regions of LOH.

View Article and Find Full Text PDF

Differentiating true somatic mutations from artifacts in massively parallel sequencing data is an immense challenge. To develop methods for optimal somatic mutation detection and to identify factors influencing somatic mutation prediction accuracy, we validated predictions from three somatic mutation detection algorithms, MuTect, JointSNVMix2 and SomaticSniper, by Sanger sequencing. Full consensus predictions had a validation rate of >98%, but some partial consensus predictions validated too.

View Article and Find Full Text PDF

Despite intensive efforts using linkage and candidate gene approaches, the genetic etiology for the majority of families with a multi-generational breast cancer predisposition is unknown. In this study, we used whole-exome sequencing of thirty-three individuals from 15 breast cancer families to identify potential predisposing genes. Our analysis identified families with heterozygous, deleterious mutations in the DNA repair genes FANCC and BLM, which are responsible for the autosomal recessive disorders Fanconi Anemia and Bloom syndrome.

View Article and Find Full Text PDF

KLLN is a p53 target gene with DNA binding function and represents a highly plausible candidate breast cancer predisposition gene. We screened for predisposing variants in 860 high-risk breast cancer families using high resolution melt analysis. A germline c.

View Article and Find Full Text PDF

MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case.

View Article and Find Full Text PDF

There is strong evidence that overtly inactivating mutations in RAD51C predispose to hereditary breast and ovarian cancer but the prevalence of such mutations, and whether they are associated with a particular clinical phenotype, remains unclear. Resolving these questions has important implications for the implementation of RAD51C into routine clinical genetic testing. Consequently, we have performed a large RAD51C mutation screen of hereditary breast and ovarian cancer families, and the first study of unselected patients diagnosed with ovarian cancer.

View Article and Find Full Text PDF

Background: MAP2K4 is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer.

Methods: We screened for mutations in MAP2K4 using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors.

View Article and Find Full Text PDF

Heterozygous somatic mutations of the transcription factor, GATA-3, have recently been reported in approximately 5% breast of tumors unselected for family history. We sequenced the GATA-3 gene in 55 breast tumors from women with familial breast cancer, and found seven heterozygous somatic mutations, all in non-BRCA1/2 cases in which the frequency was 22%. In contrast, we found mutations of GATA-3 in only 4% of 81 sporadic tumors analysed.

View Article and Find Full Text PDF

Purpose: There is accumulating evidence that microRNAs may function like classic tumor suppressor genes but little is known about their mechanism of inactivation in cancer cells. We investigated whether somatic mutations are a common mechanism of inactivation of microRNA genes in ovarian cancer.

Experimental Design: Ten cancer-implicated microRNA genes were analyzed for somatic mutations in 90 ovarian epithelial cancers and matching normal DNA.

View Article and Find Full Text PDF

Chromodomain, helicase, DNA binding 5 (CHD5) is a member of a subclass of the chromatin remodeling Swi/Snf proteins and has recently been proposed as a tumor suppressor in a diverse range of human cancers. We analyzed all 41 coding exons of CHD5 for somatic mutations in 123 primary ovarian cancers as well as 60 primary breast cancers using high-resolution melt analysis. We also examined methylation of the CHD5 promoter in 48 ovarian cancer samples by methylation-specific single-stranded conformation polymorphism and bisulfite sequencing.

View Article and Find Full Text PDF

Mutations in BRCA1 predispose to breast cancer. CTIP interacts with BRCA1 and so could also be associated with increased risk. We screened CTIP for germline mutations in 210 probands of breast cancer families including 129 families with no mutations in BRCA1 or BRCA2.

View Article and Find Full Text PDF

Several studies in various populations have suggested that non-synonymous BARD1 variants are associated with increased breast cancer risk. Using DHPLC analysis we screened the coding region of BARD1 for variants in 210 probands of breast cancer families including 129 families with no mutations in BRCA1 or BRCA2. These families were ascertained in Australia through the Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer (kConFab).

View Article and Find Full Text PDF

Purpose: Genetic changes in sporadic ovarian cancer are relatively poorly characterized compared with other tumor types. We have evaluated the use of high-resolution whole genome arrays for the genetic profiling of epithelial ovarian cancer.

Experimental Design: We have evaluated 31 primary ovarian cancers and matched normal DNA for loss of heterozygosity and copy number alterations using 500 K single nucleotide polymorphism arrays.

View Article and Find Full Text PDF

Purpose: Germ-line variants in CHEK2 have been associated with increased breast, thyroid, prostate, kidney, and colorectal cancer risk; however, the prevalence of somatic inactivation of CHEK2 in common cancer types is less clear. The aim of this study was to determine if somatic mutation and/or epigenetic modification play a role in development of sporadic breast, colon, or ovarian cancers.

Experimental Design: We undertook combined genetic and epigenetic analysis of CHEK2 in sporadic primary breast, ovarian, and colon tumors [all exhibiting chromosome 22q loss of heterozygosity (LOH)] and cancer cell lines.

View Article and Find Full Text PDF

Purpose: A very high frequency of somatic mutations in the transforming growth factor-beta signaling component km23 has been reported in a small series of ovarian cancers (8 of 19, 42%). Functional studies showed that some mutations disrupt km23 function, resulting in aberrant transforming growth factor-beta signaling and presumably enhanced tumorigenicity. If verified, this would elevate mutation of km23 as the single most frequent somatic event in ovarian cancer.

View Article and Find Full Text PDF

Chromosome 22q shows a high frequency of loss of heterozygosity (LOH) in ovarian cancers suggesting the existence of one or more important tumor suppressor genes (TSGs). The tissue inhibitor of metalloproteinase-3 (TIMP-3) is a plausible TSG candidate since it is often encompassed within these regions of LOH. TIMP-3 has not previously been investigated for somatic mutations or promoter hypermethylation in ovarian cancer.

View Article and Find Full Text PDF

Mutation of PIK3CA, the gene coding for the p110alpha catalytic subunit of phosphoinositide 3-kinase (PI3K), has been reported in a limited range of human tumors. We now report that PIK3CA is also mutated in esophageal tumors. Single-strand conformational polymorphism (SSCP) and denaturing high-performance liquid chromatography (DHPLC) were used to screen all 20 exons of PIK3CA in 101 samples from 95 individuals with esophageal cancer and/or Barrett's esophagus.

View Article and Find Full Text PDF

A functional T to G germline polymorphism in the promoter region of MDM2 (SNP309) has been reported to profoundly accelerate tumor formation suggesting that it may also represent a powerful cancer predisposing allele. To investigate the role of SNP309 in cancer predisposition we undertook a case-control study of this polymorphism among 351 women diagnosed with breast cancer, 302 women diagnosed with ovarian and 258 female controls from a British population. The GG genotype was not associated with either breast cancer (OR 1.

View Article and Find Full Text PDF