Annu Int Conf IEEE Eng Med Biol Soc
November 2021
This paper explores power spectrum-based features extracted from the 64-channel electroencephalogram (EEG) signals to analyze brain activity alterations during a virtual reality (VR)-based stressful shooting task, with low and high difficulty levels, from an initial resting baseline. This paper also investigates the variations in EEG across several experimental sessions performed over multiple days. Results indicate that patterns of changes in different power bands of the EEG are consistent with high mental stress levels during the shooting task compared to baseline.
View Article and Find Full Text PDFWhile many mouse models of hearing loss have been described, a significant fraction of the genetic defects in these models affect both the inner ear and middle ears. A common method used to separate inner-ear (sensory-neural) from middle-ear (conductive) pathologies in the hearing clinic is the combination of air-conduction and bone-conduction audiometry. In this report, we investigate the use of air- and bone-conducted evoked auditory brainstem responses to perform a similar separation in mice.
View Article and Find Full Text PDFWhile the cochlea is considered the primary site of the auditory response to bone conduction (BC) stimulation, the paths by which vibratory energy applied to the skull (or other structures) reaches the inner ear are a matter of continued investigation. We present acoustical measurements of sound in the inner ear that separate out the components of BC stimulation that excite the inner ear via ossicular motion (compression of the walls of the ear canal or ossicular inertia) from the components that act directly on the cochlea (cochlear compression or inertia, and extra-cochlear 'third-window' pathways). The results are consistent with our earlier suggestion that the inner-ear mechanisms play a large role in bone-conduction stimulation in the chinchilla at all frequencies.
View Article and Find Full Text PDFWe investigated the contribution of the middle ear to the physiological response to bone conduction stimuli in chinchilla. We measured intracochlear sound pressure in response to air conduction (AC) and bone conduction (BC) stimuli before and after interruption of the ossicular chain at the incudo-stapedial joint. Interruption of the chain effectively decouples the external and middle ear from the inner ear and significantly reduces the contributions of the outer ear and middle ear to the bone conduction response.
View Article and Find Full Text PDFThis study investigates the ossicular motion produced by bone-conducted (BC) sound in live human ears. Laser Doppler vibrometry was used to measure air conduction (AC)- and BC-induced umbo velocity (V(U)) in both ears of 10 subjects, 20 ears total. Sound pressure in the ear canal (P(EC)) was measured simultaneously.
View Article and Find Full Text PDF