Background: Successful treatments for intractable chronic low back pain (CLBP) in patients who are not eligible for surgical interventions are scarce. The superior efficacy of differential target multiplexed spinal cord stimulation (DTM SCS) to conventional SCS (Conv-SCS) on the treatment of CLBP in patients with persistent spinal pain syndrome (PSPS) who have failed surgical interventions (PSPS-T2) motivated the evaluation of DTM SCS versus Conv-SCS on PSPS patients who are non-surgical candidates (PSPS-T1).
Methods: This is a prospective, open label, crossover, post-market randomized controlled trial in 20 centers across the United States.
Objectives: This prospective, open-label, single-arm, multicenter study evaluated the use of differential target multiplexed (DTM) spinal cord stimulation (SCS) therapy for chronic upper limb pain (ULP).
Materials And Methods: A total of 58 candidates for SCS who had chronic ULP were enrolled at 11 sites in the USA. The safety and effectiveness of DTM SCS for treating chronic intractable ULP were evaluated over 12 months.
Background: Spinal cord stimulation (SCS) provides pain relief for some patients with persistent spinal pain syndrome type 2 (PSPS 2), but the precise mechanisms of action and prognostic factors for a favorable pain response remain obscure. This in vivo human genome-wide association study provides some pathophysiological clues.
Methods: We performed a high-density oligonucleotide microarray analysis of serum obtained from both PSPS 2 cases and pain-free controls who had undergone lower back spinal surgery at the study site.
Background: Differential target multiplexed spinal cord stimulation (DTM SCS) was shown to be superior to conventional SCS for treating chronic low back pain (CLBP) in subjects with persistent spinal pain syndrome with previous spinal surgery (PSPS-T2) or ineligible for it (PSPS-T1). This study reports 24-month efficacy and safety of DTM SCS vs. conventional medical management (CMM) in PSPS-T1 subjects across four European countries.
View Article and Find Full Text PDFBackground: There are limited therapeutic options to treat complex regional pain syndrome (CRPS). Spinal cord stimulation and dorsal root ganglion stimulation are proven therapies for treating chronic low limb pain in CRPS patients. There is limited evidence that stimulation of dorsal nerve roots can also provide relief of lower limb pain in these patients.
View Article and Find Full Text PDFBackground: Spinal cord stimulation (SCS) provides pain relief for most patients with persistent spinal pain syndrome type 2 (PSPS 2). Evidence is mounting on molecular changes induced by SCS as one of the mechanisms to explain pain improvement. We report the SCS effect on serum protein expression in vivo in patients with PSPS 2.
View Article and Find Full Text PDFThere is limited research on the association between the extracellular matrix (ECM) and chronic neuropathic pain. The objective of this study was twofold. Firstly, we aimed to assess changes in expression levels and the phosphorylation of ECM-related proteins due to the spared nerve injury (SNI) model of neuropathic pain.
View Article and Find Full Text PDFBackground: Chronic knee pain due to osteoarthritis (OA) is expected to become more prevalent. Although conventional therapies may provide relief they are not long-lasting. Persistent pain may lead to total knee replacement, which is not free of adverse outcomes.
View Article and Find Full Text PDFThis research focused on the development of an astrocyte cell model system (C6 glioma) for the assessment of molecular changes in response to cathodic passively balanced pulsed electrical stimulation at a rate of 50 Hz (60 µs duration, 0.15 mA intensity). Cells treated with selected neurotransmitters (glutamate, adenosine, D-serine, and γ-aminobutyric acid) were monitored (using specific fluorescent probes) for changes in levels of intracellular nitric oxide, calcium ions, and/or chloride.
View Article and Find Full Text PDFIntroduction: Spinal cord stimulation (SCS) has been used for decades to treat neuropathic pain conditions with limited understanding of its mechanisms of action. The mTOR pathway is a well-known co-factor in chronic pain and has not been previously linked to SCS therapy. Proteomic and phosphorylation analyses allow capturing a broad view of tissue response to an injury model and subsequent therapies such as SCS.
View Article and Find Full Text PDFObjectives: Rats are commonly used for translational pain and spinal cord stimulation (SCS) research. Although many SCS parameters are configured identically between rats and humans, stimulation amplitudes in rats are often programmed relative to visual motor threshold (vMT). Alternatively, amplitudes may be programmed relative to evoked compound action potential (ECAP) thresholds (ECAPTs), a sensed measure of neural activation.
View Article and Find Full Text PDFBackground: Severe coronavirus disease 2019 (COVID-19) is characterized, in part, by an excessive inflammatory response. Evidence from animal and human studies suggests that vagus nerve stimulation can lead to reduced levels of various biomarkers of inflammation. We conducted a prospective randomized controlled study (SAVIOR-I) to assess the feasibility, efficacy, and safety of non-invasive vagus nerve stimulation (nVNS) for the treatment of respiratory symptoms and inflammatory markers among patients who were hospitalized for COVID-19 (ClinicalTrials.
View Article and Find Full Text PDFIntroduction: Neuropathic pain initiates an interplay of pathways, involving MAP kinases and NFκB-signaling, leading to expression of immune response factors and activation and inactivation of proteins via phosphorylation. Neuropathic pain models demonstrated that spinal cord stimulation (SCS) may provide analgesia by modulating gene and protein expression in neuroinflammatory processes. A differential target multiplexed programming (DTMP) approach was more effective than conventional SCS treatments at modulating these.
View Article and Find Full Text PDFGlial cells play an essential role in maintaining the proper functioning of the nervous system. They are more abundant than neurons in most neural tissues and provide metabolic and catabolic regulation, maintaining the homeostatic balance at the synapse. Chronic pain is generated and sustained by the disruption of glia-mediated processes in the central nervous system resulting in unbalanced neuron-glial interactions.
View Article and Find Full Text PDFThe effect of spinal cord stimulation (SCS) using differential target multiplexed programming (DTMP) on proteins involved in the regulation of ion transport in spinal cord (SC) tissue of an animal model of neuropathic pain was evaluated in comparison to low rate (LR) SCS. Rats subjected to the spared nerve injury model (SNI) and implanted with a SCS lead were assigned to DTMP or LR and stimulated for 48 h. A No-SCS group received no stimulation, and a Sham group received no SNI or stimulation.
View Article and Find Full Text PDFWhile numerous studies and patient experiences have demonstrated the efficacy of spinal cord stimulation as a treatment for chronic neuropathic pain, the exact mechanism underlying this therapy is still uncertain. Recent studies highlighting the importance of microglial cells in chronic pain and characterizing microglial activation transcriptomes have created a focus on microglia in pain research. Our group has investigated the modulation of gene expression in neurons and glial cells after spinal cord stimulation (SCS), specifically focusing on transcriptomic changes induced by varying SCS stimulation parameters.
View Article and Find Full Text PDFSpinal cord stimulation is a proven effective therapy for treating chronic neuropathic pain. Previous work in our laboratory demonstrated that spinal cord stimulation based on a differential target multiplexed programming approach provided significant relief of pain-like behavior in rodents subjected to the spared nerve injury model of neuropathic pain. The relief was significantly better than obtained using high rate and low rate programming.
View Article and Find Full Text PDFPurpose Of Review: The purpose of the present systematic review is to provide a current understanding of the mechanism of action and the evidence available to support clinical decision-making. The focus is to summarize randomized controlled trials (RCTs) and nonrandomized or observational studies of spinal cord stimulation in chronic pain to understand clinical effectiveness and the mechanism of action.
Recent Findings: Several recent studies have demonstrated the benefit of spinal cord stimulation in managing chronic pain.
Background: Epidural steroid injection (ESI) is a common practice for pain treatment since 1953. In 2014, the FDA issued a warning about ESI. Studies have focused on the effect of the particle size and their ability to generate harmful aggregates.
View Article and Find Full Text PDFObjectives: Primary Objective: The primary objective is to reduce initiation of mechanical ventilator dependency in patients with moderate to severe CoViD- 19. This will be measured as the difference between the control group and active group for subjects admitted to the hospital for CoViD-19. Secondary Objectives: • To evaluate cytokine trends / Prevent cytokine storms • To evaluate supplemental oxygen requirements • To decrease mortality of CoViD-19 patients • Delay onset of ventilation TRIAL DESIGN: The study is a single centre, 2-arm, prospective, randomized (ratio 1:1), controlled trial with parallel groups design to compare the reduction of respiratory distress in a CoViD-19 population, using the intervention of the gammaCore®-Sapphire device plus standard of care (active) vs.
View Article and Find Full Text PDFThe development and maintenance of chronic neuropathic pain involves distorted neuroglial interactions, which result in prolonged perturbations of immune and inflammatory response, as well as disrupted synapses and cellular interactions. Spinal cord stimulation (SCS) has proven effective and safe for more than 40 years, but comprehensive understanding of its mode of action remains elusive. Previous work in our laboratory provided evidence that conventional SCS parameters modulate biological processes associated with neuropathic pain in animals.
View Article and Find Full Text PDFObjectives: Spinal cord stimulation (SCS) provides relief for patients suffering from chronic neuropathic pain although its mechanism may not be as dependent on electrical interference as classically considered. Recent evidence has been growing regarding molecular changes that are induced by SCS as being a key player in reversing the pain process. Here, we observed the effect of SCS on altering protein expression in spinal cord tissue using a proteomic analysis approach.
View Article and Find Full Text PDFGlial cells comprise the majority of cells in the central nervous system and exhibit diverse functions including the development of persistent neuropathic pain. While earlier theories have proposed that the applied electric field specifically affects neurons, it has been demonstrated that electrical stimulation (ES) of neural tissue modulates gene expression of the glial cells. This study examines the effect of ES on the expression of eight genes related to oxidative stress and neuroprotection in cultured rodent glioma cells.
View Article and Find Full Text PDFSpinal cord stimulation (SCS) applied between T8 and T11 segments has been shown to be effective for the treatment of chronic pain of the lower back and limbs. However, the mechanism of the analgesic effect at these medullary levels remains unclear. Numerous studies relate glial cells with development and maintenance of chronic neuropathic pain.
View Article and Find Full Text PDF