Background: Interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013).
View Article and Find Full Text PDFBackground: Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18-25 % of the total soluble sugars in the hydrolysate and 12-18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7-9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production from cellulosic biomass.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2013
Two fungal-secreted α-fucosidases and their genes were characterized. FoFCO1 was purified from culture filtrates of Fusarium oxysporum strain 0685 grown on L-fucose and its encoding gene identified in the sequenced genome of strain 4287. FoFCO1 was active on p-nitrophenyl-α-fucoside (pNP-Fuc), but did not defucosylate a nonasaccharide (XXFG) fragment of pea xyloglucan.
View Article and Find Full Text PDFXyloglucan is an important hemicellulosic polysaccharide in dicot primary cell walls. Most of the enzymes involved in xyloglucan synthesis have been identified. However, many important details of its synthesis in vivo remain unknown.
View Article and Find Full Text PDFThe CELLULOSE SYNTHASE (CESA) superfamily of proteins contains several sub-families of closely related CELLULOSE SYNTHASE-LIKE (CSL) sequences. Among these, the CSLA and CSLC families are closely related to each other and are the most evolutionarily divergent from the CESA family. Significant progress has been made with the functional characterization of CSLA and CSLC genes, which have been shown to encode enzymes with 1,4-β-glycan synthase activities involved in the biosynthesis of mannan and possibly xyloglucan backbones, respectively.
View Article and Find Full Text PDFThe function of a putative xyloglucan xylosyltransferase from Arabidopsis thaliana (At1g74380; XXT5) was studied. The XXT5 gene is expressed in all plant tissues, with higher levels of expression in roots, stems and cauline leaves. A T-DNA insertion in the XXT5 gene generates a readily visible root hair phenotype (root hairs are shorter and form bubble-like extrusions at the tip), and also causes the alteration of the main root cellular morphology.
View Article and Find Full Text PDFXyloglucans are the main hemicellulosic polysaccharides found in the primary cell walls of dicots and nongraminaceous monocots, where they are thought to interact with cellulose to form a three-dimensional network that functions as the principal load-bearing structure of the primary cell wall. To determine whether two Arabidopsis thaliana genes that encode xylosyltransferases, XXT1 and XXT2, are involved in xyloglucan biosynthesis in vivo and to determine how the plant cell wall is affected by the lack of expression of XXT1, XXT2, or both, we isolated and characterized xxt1 and xxt2 single and xxt1 xxt2 double T-DNA insertion mutants. Although the xxt1 and xxt2 mutants did not have a gross morphological phenotype, they did have a slight decrease in xyloglucan content and showed slightly altered distribution patterns for xyloglucan epitopes.
View Article and Find Full Text PDFCurr Opin Plant Biol
December 2006
Cellulose, a major component of plant cell walls, is made by dynamic complexes that move within the plasma membrane while depositing cellulose directly into the wall. On the other hand, matrix polysaccharides are made in the Golgi and delivered to the wall via secretory vesicles. Several Golgi proteins that are involved in glucomannan and xyloglucan biosynthesis have been identified, including some glycan synthases that show sequence similarity to the cellulose synthase proteins and several glycosytransferases that add sidechains to the polysaccharide backbones.
View Article and Find Full Text PDFXyloglucan (XyG) is the principal hemicellulose found in the primary cell walls of most plants. XyG is composed of a beta-(1,4)-glucan backbone that is substituted in a regular pattern with xylosyl residues, which are added by at least one and likely two or three xylosyltransferase (XT) enzymes. Previous work identified seven Arabidopsis thaliana candidate genes, one of which (AtXT1) was shown to encode a protein with XT activity (Faik, A.
View Article and Find Full Text PDF