Publications by authors named "David Catalan-Martinez"

Microwave-assisted oxide reduction has emerged as a promising method to electrify chemical looping processes for renewable hydrogen production. Moreover, these thermochemical cycles can be used for thermochemical air separation, electrifying the O generation by applying microwaves in the reduction step. This approach offers an alternative to conventional cryogenic air separation, producing pure streams of O and N.

View Article and Find Full Text PDF

Hydrogen production from water electrolysis is a key enabling energy storage technology for the large-scale deployment of intermittent renewable energy sources. Proton ceramic electrolysers (PCEs) can produce dry pressurized hydrogen directly from steam, avoiding major parts of cost-driving downstream separation and compression. However, the development of PCEs has suffered from limited electrical efficiency due to electronic leakage and poor electrode kinetics.

View Article and Find Full Text PDF