Publications by authors named "David Castello-Lurbe"

The multifrequency character of nonlinearity dispersion is often dismissed because, in principle, it increases the computational load exceedingly rendering an impractical modeling and, typically, nonlinearities barely depend on frequency. Nonetheless, nonlinearity dispersion has recently enabled a solution to a long-standing challenge in optics. To explore the potential of this research avenue on solid theoretical grounds, we derive a propagation equation accounting for multifrequency nonlinearities rigorously that maintains the computational advantages of conventional models.

View Article and Find Full Text PDF

Accurate knowledge of the nonlinear coefficient is extremely important to make reliable predictions about optical pulses propagating along waveguides. Nevertheless, determining this parameter when dispersion and loss are as important as nonlinear effects brings both theoretical and experimental challenges that have not yet been solved. A general method for measuring the nonlinear coefficient of waveguides under these demanding conditions is here derived and demonstrated experimentally in a kilometer-long standard silica fiber pumped close to 2 µm.

View Article and Find Full Text PDF

Supercontinuum generation in the anomalous group-velocity dispersion regime is widely considered to be inherently unstable against input pulse fluctuations. This constraint has compelled a coherent supercontinuum to be triggered by femtosecond pulses. In this work, conditions for breaking this fundamental limitation are analytically derived and realized in a silicon waveguide by exploiting the Kerr nonlinearity dispersion.

View Article and Find Full Text PDF

Nonlinear propagation of light pulses can excite dispersive waves anchored at frequencies determined by the chromatic dispersion curve. In this work, conditions enabling dispersive-wave self-frequency shift over the propagation distance are analytically derived in the normal dispersion regime. Importantly, this novel, to the best of our knowledge, scenario is not found by solving the complex dynamics of the pulse, but by studying the evolution of the nonlinear and dispersive length scales.

View Article and Find Full Text PDF

No general approach is available yet to measure directly the ratio between chromatic dispersion and the nonlinear coefficient, and hence the soliton number for a given optical pulse, in an arbitrary guiding medium. Here we solve this problem using continuum generation. We experimentally demonstrate our method in polarization-maintaining and single-mode fibers with positive and negative chromatic dispersion.

View Article and Find Full Text PDF

Graphene is considered a record-performance nonlinear-optical material on the basis of numerous experiments. The observed strong nonlinear response ascribed to the refractive part of graphene's electronic third-order susceptibility χ cannot, however, be explained using the relatively modest χ value theoretically predicted for the 2D material. Here we solve this long-standing paradox and demonstrate that, rather than χ-based refraction, a complex phenomenon which we call saturable photoexcited-carrier refraction is at the heart of nonlinear-optical interactions in graphene such as self-phase modulation.

View Article and Find Full Text PDF

We numerically show the advantages of using diamond-on-insulator (DOI) waveguides to design compact supercontinuum (SC) light sources for the visible (VIS) wavelength range. We conclude that the DOI platform is more suitable than silicon nitride waveguides for tailoring the dispersion in such a way that a zero-dispersion wavelength (ZDW) is obtained in the VIS, as is required to achieve efficient VIS SC generation (SCG). After designing a DOI waveguide that features a ZDW at ∼600  nm, we exploit it to numerically obtain a smooth SC ranging from 453 nm to 1030 nm above the -30  dB point after propagation over 4 mm.

View Article and Find Full Text PDF

A fully analytical toolbox for supercontinuum generation relying on scenarios without pulse splitting is presented. Furthermore, starting from the new insights provided by this formalism about the physical nature of direct and cascaded dispersive wave emission, a unified description of this radiation in both normal and anomalous dispersion regimes is derived. Previously unidentified physics of broadband spectra reported in earlier works is successfully explained on this basis.

View Article and Find Full Text PDF

Four-wave-mixing processes enabled during optical wave-breaking (OWB) are exploited in this paper for supercontinuum generation. Unlike conventional approaches based on OWB, phase-matching is achieved here for these nonlinear interactions, and, consequently, new frequency production becomes more efficient. We take advantage of this kind of pulse propagation to obtain numerically a coherent octave-spanning mid-infrared supercontinuum generation in a silicon waveguide pumping at telecom wavelengths in the normal dispersion regime.

View Article and Find Full Text PDF

Generation of multiple tones using four-wave mixing (FWM) has been exploited for many applications, ranging from wavelength conversion to frequency comb generation. FWM is a coherent process, meaning that its dynamics strongly depend on the relative phase among the waves involved. The coherent nature of FWM has been exploited for phase-sensitive processing in different waveguide structures, but it has never been studied in integrated microresonators.

View Article and Find Full Text PDF

Microresonator combs exploit parametric oscillation and nonlinear mixing in an ultrahigh-Q cavity. This new comb generator offers unique potential for chip integration and access to high repetition rates. However, time-domain studies reveal an intricate spectral coherence behavior in this type of platform.

View Article and Find Full Text PDF

In this work we recognize new strategies involving optical wave-breaking for controlling the output pulse spectrum in nonlinear fibers. To this end, first we obtain a constant of motion for nonlinear pulse propagation in waveguides derived from the generalized nonlinear Schrödinger equation. In a second phase, using the above conservation law we theoretically analyze how to transfer in a simple manner the group-velocity-dispersion curve of the waveguide to the output spectral profile of pulsed light.

View Article and Find Full Text PDF

Spectral broadening in silicon waveguides is usually inhibited at telecom wavelengths due to some adverse effects related to semiconductor dynamics, namely, two-photon and free-carrier absorption (FCA). In this Letter, our numerical simulations show that it is possible to achieve a significant enhancement in spectral broadening when we properly preshape the input pulse to reduce the impact of FCA on spectral broadening. Our analysis suggests that the use of input pulses with the correct skewness and power level is crucial for this achievement.

View Article and Find Full Text PDF