Kinesin-1 is a microtubule motor that transports cellular cargo along microtubules. KIF5A is one of three kinesin-1 isoforms in humans, all of which are autoinhibited by an interaction between the motor and an IAK motif in the proximal region of the C-terminal tail. The C-terminal tail of KIF5A is ∼80 residues longer than the other two kinesin-1 isoforms (KIF5B and KIF5C) and it is unclear if it contributes to autoinhibition.
View Article and Find Full Text PDFNon-muscle myosin 2A (NM2A), a widely expressed class 2 myosin, is important for organizing actin filaments in cells. It cycles between a compact inactive 10S state in which its regulatory light chain (RLC) is dephosphorylated and a filamentous state in which the myosin heads interact with actin, and the RLC is phosphorylated. Over 170 missense mutations in MYH9, the gene that encodes the NM2A heavy chain, have been described.
View Article and Find Full Text PDFMyosin-2 is essential for processes as diverse as cell division and muscle contraction. Dephosphorylation of its regulatory light chain promotes an inactive, 'shutdown' state with the filament-forming tail folded onto the two heads, which prevents filament formation and inactivates the motors. The mechanism by which this happens is unclear.
View Article and Find Full Text PDFMethods Mol Biol
February 2018
The heterologous expression of membrane proteins driven by T7 RNA polymerase in E. coli is often limited by a mismatch between the transcriptional and translational rates resulting in saturation of the Sec translocon and non-insertion of the membrane protein. In order to optimize the levels of folded, functional inserted protein, it is important to correct this mismatch.
View Article and Find Full Text PDF