Objective: To measure the accuracy of material decomposition using a dual-source photon-counting-detector (DS-PCD) CT operated in the high-pitch helical scanning mode and compare the results against dual-source energy-integrating-detector (DS-EID) CT, which requires use of a low-pitch value in dual-energy mode.
Methods: A DS-PCD CT and a DS-EID CT were used to scan a cardiac motion phantom consisting of a 3-mm diameter iodine cylinder. Iodine maps were reconstructed using DS-PCD in high-pitch mode and DS-EID in low-pitch mode.
Background: Individuals with cystic fibrosis (CF) have persistent lung infections, necessitating the frequent use of antibiotics for pulmonary exacerbations. Some respiratory pathogens have intrinsic resistance to the currently available antibiotics, and any pathogen may acquire resistance over time, posing a challenge to CF care. Gaseous nitric oxide has been shown to have antimicrobial activity against a wide variety of microorganisms, including common CF pathogens, and offers a potential inhaled antimicrobial therapy.
View Article and Find Full Text PDF