Publications by authors named "David Cabot"

Fisheries waste is used by many seabirds as a supplementary source of food, but interacting with fishing vessels to obtain this resource puts birds at risk of entanglement in fishing gear and mortality. As a result, bycatch is one of the leading contributors to seabird decline worldwide, and this risk may increase over time as birds increasingly associate fishing vessels with food. Light-level geolocators mounted on seabirds can detect light emitted from vessels at night year-round.

View Article and Find Full Text PDF

Higher levels of persistent pollutants (Σ16PCB, Σ6PBDE, ΣHCH, ΣDDT, ΣCHL) were detected in fresh eggs of Common Terns Sterna hirundo from Rockabill Island near Dublin (Ireland's industrialised capital city) compared to Common and Arctic Terns S. paradisaea from Ireland's west coast. Intra-clutch variation of pollutant levels in Common Terns was shown to be low, providing further evidence that random sampling of one egg may be an appropriate sampling strategy.

View Article and Find Full Text PDF
Article Synopsis
  • * The Arctic Animal Movement Archive (AAMA) is a new resource that compiles over 200 animal tracking studies from 1991 to now, making it easier to access and analyze this data.
  • * Through AAMA, researchers are studying how climate change affects animal behaviors, including eagle migration timing, caribou reproduction patterns, and movement rates of terrestrial mammals.
View Article and Find Full Text PDF

Anthropogenic climate disruption, including temperature and precipitation regime shifts, has been linked to animal population declines since the mid-20th century. However, some species, such as Arctic-breeding geese, have thrived during this period. An increased understanding of how climate disruption might link to demographic rates in thriving species is an important perspective in quantifying the impact of anthropogenic climate disruption on the global state of nature.

View Article and Find Full Text PDF

Tracking seasonally changing resources is regarded as a widespread proximate mechanism underpinning animal migration. Migrating herbivores, for example, are hypothesized to track seasonal foliage dynamics over large spatial scales. Previous investigations of this green wave hypothesis involved few species and limited geographical extent, and used conventional correlation that cannot disentangle alternative correlated effects.

View Article and Find Full Text PDF

Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover.

View Article and Find Full Text PDF

Herbivorous birds are hypothesized to migrate in spring along a seasonal gradient of plant profitability towards their breeding grounds (green wave hypothesis). For Arctic breeding species in particular, following highly profitable food is important, so that they can replenish resources along the way and arrive in optimal body condition to start breeding early. We compared the timing of migratory movements of Arctic breeding geese on different flyways to examine whether flyways differed in the predictability of spring conditions at stopovers and whether this was reflected in the degree to which birds were following the green wave.

View Article and Find Full Text PDF

Background: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey.

View Article and Find Full Text PDF