Protein-protein interactions have become attractive targets for both experimental and therapeutic interventions. The PSD-95/Dlg1/ZO-1 (PDZ) domain is found in a large family of eukaryotic scaffold proteins that plays important roles in intracellular trafficking and localization of many target proteins. Here, we seek inhibitors of the PDZ protein that facilitates post-endocytic degradation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR): the CFTR-associated ligand (CAL).
View Article and Find Full Text PDFLeishmaniasis is a parasitic infection that afflicts approximately 12 million people worldwide. There are several limitations to the approved drug therapies for leishmaniasis, including moderate to severe toxicity, growing drug resistance, and the need for extended dosing. Moreover, miltefosine is currently the only orally available drug therapy for this infection.
View Article and Find Full Text PDFA pharmacoperone (from "pharmacological chaperone") is a small molecule that enters cells and serves as molecular scaffolding in order to cause otherwise-misfolded mutant proteins to fold and route correctly within the cell. Pharmacoperones have broad therapeutic applicability since a large number of diseases have their genesis in the misfolding of proteins and resultant misrouting within the cell. Misrouting may result in loss-of-function and, potentially, the accumulation of defective mutants in cellular compartments.
View Article and Find Full Text PDFWe previously reported the phenylchloronitrobenzamides (PCNBs), a novel class of compounds active against the species of trypanosomes that cause Human African Trypanosomiasis (HAT). Herein, we explored the potential to adjust the reactivity of the electrophilic chloronitrobenzamide core. These studies identified compound 7d that potently inhibited the growth of trypanosomes (EC50=120nM for Trypanosoma b.
View Article and Find Full Text PDFPharmacoperone drugs correct the folding of misfolded protein mutants and restore function (i.e., "rescue") by correcting the routing of (otherwise) misrouted mutants.
View Article and Find Full Text PDFMutations cause protein folding defects that result in cellular misrouting of otherwise functional proteins. Such mutations are responsible for a wide range of disease states, especially among G-protein coupled receptors. Drugs which serve as chemical templates and promote the proper folding of these proteins are valuable therapeutic molecules since they return functional proteins to the proper site of action.
View Article and Find Full Text PDFMalaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals.
View Article and Find Full Text PDFHuman African trypanosomiasis, caused by the eukaryotic parasite Trypanosoma brucei, is a serious health problem in much of central Africa. The only validated molecular target for treatment of human African trypanosomiasis is ornithine decarboxylase (ODC), which catalyzes the first step in polyamine metabolism. Here, we describe the use of an enzymatic high throughput screen of 316,114 unique molecules to identify potent and selective inhibitors of ODC.
View Article and Find Full Text PDFIn an effort to discover novel anti-trypanosomal compounds, a series of podophyllotoxin analogues coupled to non-steroidal anti-inflammatory drugs (NSAIDs) has been synthesized and evaluated for activity versus Trypanosoma brucei and a panel of human cell lines, revealing compounds with low nano-molar potencies. It was discovered that coupling of NSAIDs to podophyllotoxin increased the potencies of both compounds over 1300-fold. The compounds were shown to be cytostatic in nature and seem to act via de-polymerization of tubulin in a manner consistent with the known activities of podophyllotoxin.
View Article and Find Full Text PDFHerein, we describe the optimization of a linked enzyme assay suitable for high-throughput screening of decarboxylases, a target family whose activity has historically been difficult to quantify. Our approach uses a commercially available bicarbonate detection reagent to measure decarboxylase activity. The assay is performed in a fully enclosed automated screening system under inert nitrogen atmosphere to minimize perturbation by exogenous CO2.
View Article and Find Full Text PDFThe p53 pathway is disrupted in virtually every human tumor. In approximately 50% of human cancers, the p53 gene is mutated, and in the remaining cancers, the pathway is dysregulated by genetic lesions in other genes that modulate the p53 pathway. One common mechanism for inactivation of the p53 pathway in tumors that express wild-type p53 is increased expression of MDM2 or MDMX.
View Article and Find Full Text PDF