Many root parasitic plants in the Orobanchaceae use host-derived strigolactones (SLs) as germination cues. This adaptation facilitates attachment to a host and is particularly important for the success of obligate parasitic weeds that cause substantial crop losses globally. Parasite seeds sense SLs through 'divergent' KARRIKIN INSENSITIVE2 (KAI2d)/HYPOSENSITIVE TO LIGHT α/β-hydrolases that have undergone substantial duplication and diversification in Orobanchaceae genomes.
View Article and Find Full Text PDFHormone-activated proteolysis is a recurring theme of plant hormone signaling mechanisms. In strigolactone signaling, the enzyme receptor DWARF14 (D14) and an F-box protein, MORE AXILLARY GROWTH2 (MAX2), mark SUPPRESSOR OF MAX2 1-LIKE (SMXL) family proteins SMXL6, SMXL7, and SMXL8 for rapid degradation. Removal of these transcriptional corepressors initiates downstream growth responses.
View Article and Find Full Text PDFFairy chemicals (FCs), 2-azahypoxanthine (AHX), imidazole-4-carboxamide (ICA), and 2-aza-8-oxohypoxanthine (AOH), are molecules with many diverse functions in plants. The defined biosynthetic pathway for FCs is a novel purine metabolism in which they are biosynthesized from 5-aminoimidazole-4-carboxamide. Here, we show that one of the purine salvage enzymes, hypoxanthine-guanine phosphoribosyltransferase (HGPRT), recognizes AHX and AOH as substrates.
View Article and Find Full Text PDF2-Azahypoxanthine was isolated from the fairy ring-forming fungus as a fairy ring-inducing compound. 2-Azahypoxanthine has an unprecedented 1,2,3-triazine moiety, and its biosynthetic pathway is unknown. The biosynthetic genes for 2-azahypoxanthine formation in were predicted by a differential gene expression analysis using MiSeq.
View Article and Find Full Text PDF2-Azahypoxanthine (AHX) and 2-aza-8-oxohypoxanthine (AOH), discovered as causal substances of fairy rings are known to be endogenous in the fairy ring-forming Lepista sordida. In this study, we showed that xanthine dioxygenase, an a-ketoglutarate-dependent dioxygenase, might catalyze the conversion of AHX to AOH in the fungus. Furthermore, this enzyme is the first reported molybdopterin-independent protein of hypoxanthine metabolism.
View Article and Find Full Text PDFKarrikins (KARs) are a class of butenolide compounds found in smoke that were first identified as seed germination stimulants for fire-following species. Early studies of KARs classified the germination and postgermination responses of many plant species and investigated crosstalk with plant hormones that regulate germination. The discovery that Arabidopsis thaliana responds to KARs laid the foundation for identifying mutants with altered KAR responses.
View Article and Find Full Text PDFParasitic plants are worldwide threats that damage major agricultural crops. To initiate infection, parasitic plants have developed the ability to locate hosts and grow towards them. This ability, called host tropism, is critical for parasite survival, but its underlying mechanism remains mostly unresolved.
View Article and Find Full Text PDFThe karrikin (KAR) receptor and several related signaling components have been identified by forward genetic screening, but only a few studies have reported on upstream and downstream KAR signaling components and their roles in drought tolerance. Here, we characterized the functions of KAR UPREGULATED F-BOX 1 (KUF1) in drought tolerance using a reverse genetics approach in Arabidopsis (Arabidopsis thaliana). We observed that kuf1 mutant plants were more tolerant to drought stress than wild-type (WT) plants.
View Article and Find Full Text PDFThe effects of the phytohormone strigolactone (SL) and smoke-derived karrikins (KARs) on plants are generally distinct, despite the fact that they are perceived through very similar mechanisms. The homologous receptors DWARF14 (D14) and KARRIKIN-INSENSITIVE2 (KAI2), together with the F-box protein MORE AXILLARY GROWTH2 (MAX2), mediate SL and KAR responses, respectively, by targeting different SMAX1-LIKE (SMXL) family proteins for degradation. These mechanisms are putatively well-insulated, with D14-MAX2 targeting SMXL6, SMXL7, and SMXL8 and KAI2-MAX2 targeting SMAX1 and SMXL2 in .
View Article and Find Full Text PDFDWARF14 (D14) is an ɑ/β-hydrolase and receptor for the plant hormone strigolactone (SL) in angiosperms. Upon SL perception, D14 works with MORE AXILLARY GROWTH2 (MAX2) to trigger polyubiquitination and degradation of DWARF53(D53)-type proteins in the SUPPRESSOR OF MAX2 1-LIKE (SMXL) family. We used CRISPR-Cas9 to generate knockout alleles of the two homoeologous genes in the genome.
View Article and Find Full Text PDF2-Azahypoxanthine (AHX) was first isolated from the culture broth of the fungus as a fairy ring-inducing compound. It has since been found that a large number of plants and mushrooms produce AHX endogenously and that AHX has beneficial effects on plant growth. The AHX molecule has an unusual, nitrogen-rich 1,2,3-triazine moiety of unknown biosynthetic origin.
View Article and Find Full Text PDFSignificanceKarrikins are chemicals in smoke that stimulate regrowth of many plants after fire. However, karrikin responses are not limited to species from fire-prone environments and can affect growth after germination. Putatively, this is because karrikins mimic an unknown signal in plants, KAI2 ligand (KL).
View Article and Find Full Text PDFParasitic weeds such as have led to significant losses in agricultural productivity worldwide. These weeds use the plant hormone strigolactone as a germination stimulant. Strigolactone signaling involves substrate hydrolysis followed by a conformational change of the receptor to a "closed" or "active" state that associates with a signaling partner, MAX2/D3.
View Article and Find Full Text PDFGene-editing tools such as CRISPR-Cas9 have created unprecedented opportunities for genetic studies in plants and animals. We designed a course-based undergraduate research experience (CURE) to train introductory biology students in the concepts and implementation of gene-editing technology as well as develop their soft skills in data management and scientific communication. We present two versions of the course that can be implemented with twice-weekly meetings over a 5-week period.
View Article and Find Full Text PDFRoot parasitic plants such as Striga, Orobanche, and Phelipanche spp. cause serious damage to crop production world-wide. Deletion of the Low Germination Stimulant 1 (LGS1) gene gives a Striga-resistance trait in sorghum (Sorghum bicolor).
View Article and Find Full Text PDFWitchweed, or Striga hermonthica, is a parasitic weed that destroys billions of dollars' worth of crops globally every year. Its germination is stimulated by strigolactones exuded by its host plants. Despite high sequence, structure, and ligand-binding site conservation across different plant species, one strigolactone receptor in witchweed, ShHTL7, uniquely exhibits a picomolar EC50 for downstream signaling.
View Article and Find Full Text PDFThe butenolide molecule, karrikin (KAR), emerging in smoke of burned plant material, enhances light responses such as germination, inhibition of hypocotyl elongation, and anthocyanin accumulation in Arabidopsis. The KAR signaling pathway consists of KARRIKIN INSENSITIVE 2 (KAI2) and MORE AXILLARY GROWTH 2 (MAX2), which, upon activation, act in an SCF E3 ubiquitin ligase complex to target the downstream signaling components SUPPRESSOR OF MAX2 1 (SMAX1) and SMAX1-LIKE 2 (SMXL2) for degradation. How degradation of SMAX1 and SMXL2 is translated into growth responses remains unknown.
View Article and Find Full Text PDFChemical signals known as strigolactones (SLs) were discovered more than 50 years ago as host-derived germination stimulants of parasitic plants in the Orobanchaceae. Strigolactone-responsive germination is an essential adaptation of obligate parasites in this family, which depend upon a host for survival. Several species of obligate parasites, including witchweeds (Striga, Alectra spp.
View Article and Find Full Text PDFRatiometric reporters are tools to dynamically measure the relative abundance of a protein of interest. In these systems, a target protein fused to a fluorescent or bioluminescent reporter is expressed with fixed stoichiometry to a reference protein fused to a second reporter. Both fusion proteins are encoded on a single transcript but are separated during translation by a 2A "self-cleaving" peptide.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2021
Myocardial ischemia-reperfusion (I/R) injury increases the generation of oxidized phosphatidylcholines (OxPCs), which results in cell death. However, the mechanism by which OxPCs mediate cell death and cardiac dysfunction is largely unknown. The aim of this study was to determine the mechanisms by which OxPC triggers cardiomyocyte cell death during reperfusion injury.
View Article and Find Full Text PDFStrigolactones and karrikins are butenolide molecules that regulate plant growth. They are perceived by the α/β-hydrolase DWARF14 (D14) and its homologue KARRIKIN INSENSITIVE2 (KAI2), respectively. Plant-derived strigolactones have a butenolide ring with a methyl group that is essential for bioactivity.
View Article and Find Full Text PDFRatiometric reporter systems enable comparisons of the abundance of a protein of interest, or "target," relative to a reference protein. Both proteins are encoded on a single transcript but are separated during translation. This arrangement bypasses the potential for discordant expression that can arise when the target and reference proteins are encoded by separate genes.
View Article and Find Full Text PDFKarrikins (KARs) are butenolides found in smoke that can influence germination and seedling development of many plants. The KAR signaling mechanism is hypothesized to be very similar to that of the plant hormone strigolactone (SL). Both pathways require the F-box protein MORE AXILLARY GROWTH2 (MAX2), and other core signaling components have shared ancestry.
View Article and Find Full Text PDF