The autofocus problem in synthetic aperture radar imaging amounts to estimating unknown phase errors caused by unknown platform or target motion. At the heart of three state-of-the-art autofocus algorithms, namely, phase gradient autofocus, multichannel autofocus (MCA), and Fourier-domain multichannel autofocus (FMCA), is the solution of a constant modulus quadratic program (CMQP). Currently, these algorithms solve a CMQP by using an eigenvalue relaxation approach.
View Article and Find Full Text PDFAutofocus algorithms are used to restore images in nonideal synthetic aperture radar imaging systems. In this paper, we propose a bilinear parametric model for the unknown image and the nuisance phase parameters and derive an efficient maximum-likelihood autofocus (MLA) algorithm. In the special case of a simple image model and a narrow range of look angles, MLA coincides with the successful multichannel autofocus (MCA).
View Article and Find Full Text PDFIEEE Trans Image Process
December 2011
Synthetic aperture radar (SAR) imaging suffers from image focus degradation in the presence of phase errors in the received signal due to unknown platform motion or signal propagation delays. We present a new autofocus algorithm, termed Fourier-domain multichannel autofocus (FMCA), that is derived under a linear algebraic framework, allowing the SAR image to be focused in a noniterative fashion. Motivated by the mutichannel autofocus (MCA) approach, the proposed autofocus algorithm invokes the assumption of a low-return region, which generally is provided within the antenna sidelobes.
View Article and Find Full Text PDFWe present a new noniterative approach to synthetic aperture radar (SAR) autofocus, termed the multichannel autofocus (MCA) algorithm. The key in the approach is to exploit the multichannel redundancy of the defocusing operation to create a linear subspace, where the unknown perfectly focused image resides, expressed in terms of a known basis formed from the given defocused image. A unique solution for the perfectly focused image is then directly determined through a linear algebraic formulation by invoking an additional image support condition.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2007
Synthetic aperture radar (SAR) autofocus techniques that optimize sharpness metrics can produce excellent restorations in comparison with conventional autofocus approaches. To help formalize the understanding of metric-based SAR autofocus methods, and to gain more insight into their performance, we present a theoretical analysis of these techniques using simple image models. Specifically, we consider the intensity-squared metric, and a dominant point-targets image model, and derive expressions for the resulting objective function.
View Article and Find Full Text PDFIEEE Trans Med Imaging
January 2006
Phase unwrapping is an important problem in many magnetic resonance imaging applications, such as field mapping and flow imaging. The challenge in two-dimensional phase unwrapping lies in distinguishing jumps due to phase wrapping from those due to noise and/or abrupt variations in the actual function. This paper addresses this problem using a Markov random field to model the true phase function, whose parameters are determined by maximizing the a posteriori probability.
View Article and Find Full Text PDFWe develop a bistatic model for airborne lidar returns collected by an imaging array from underwater objects, incorporating additional returns from the surrounding water medium and ocean bottom. Our results provide a generalization of the monostatic model by Walker and McLean. In the bistatic scheme the transmitter and receiver are spatially separated or are not coaligned.
View Article and Find Full Text PDF