Phys Chem Chem Phys
October 2023
Experimental results show that the presence of a concentration gradient of certain nano-ions (most notably cobaltabisdicarbollide ([-COSAN] anions), induce a current across intact artificial phospholipid bilayers in spite of the high Born free energy estimated for these ions. The mechanism underlying this observed translocation of nano-anions across membranes has yet to be determined. Here we show, using molecular dynamics simulations, that the permeation of [-COSAN] anions across a lipid bilayer proceeds in a cooperative manner.
View Article and Find Full Text PDFA prominent feature of coronaviruses is the presence of a large glycoprotein spike protruding from a lipidic membrane. This glycoprotein spike determines the interaction of coronaviruses with the environment and the host. In this paper, we perform all atomic molecular dynamics simulations of the interaction between the SARS-CoV-2 trimeric glycoprotein spike and surfaces of materials.
View Article and Find Full Text PDFWe provide experimental and theoretical understanding on fundamental processes taking place at room temperature when a fluorinated fullerene dopant gets close to a metal surface. By employing scanning tunneling microscopy and photoelectron spectroscopies, we demonstrate that the on-surface integrity of CF depends on the interaction with the particular metal it approaches. Whereas on Au(111) the molecule preserves its chemical structure, on more reactive surfaces such as Cu(111) and Ni(111), molecules interacting with the bare metal surface lose the halogen atoms and transform to C.
View Article and Find Full Text PDFCobaltabisdicarbollide (COSAN) anions have an unexpectedly rich self-assembly behavior, which can lead to vesicles and micelles without having a classical surfactant molecular architecture. This was rationalized by the introduction of new terminology and novel driving forces. A key aspect in the interpretation of COSAN behavior is the assumption that the most stable form of these ions is the transoid rotamer, which lacks a "hydrophilic head" and a "hydrophobic tail".
View Article and Find Full Text PDFIn the past decade, profuse research efforts explored the uses of iron oxide particles in nanomedicine. To a great extent, the efficiency and fate of those magnetic nanoparticles depend on how their surfaces interface with the proteins in a physiological environment. It is well reported how an ungoverned protein corona can be detrimental to cellular uptake and targeting efficiency and how it can modify the nanoparticles biodistribution.
View Article and Find Full Text PDFLoading in cartilage is supported primarily by fibrillar collagen, and damage will impair the function of the tissue, leading to pathologies such as osteoarthritis. Damage is initiated by two types of matrix metalloproteinases, collagenase and gelatinase, that cleave and denature the collagen fibrils in the tissue. Experimental and modeling studies have revealed insights into the individual contributions of these two types of MMPs, as well as the mechanical response of intact fibrils and fibrils that have experienced random surface degradation.
View Article and Find Full Text PDFAdv Colloid Interface Sci
May 2019
The study of nanocellulose is a field of growing interest due to its many applications and its use in the development of biocompatible and eco-friendly materials. In spite of the vast number of studies in the field, many questions about the role of the molecular structure in the properties of cellulose are still subject of debate. One of these fundamental questions is the possible amphiphilic nature of cellulose and the relative role of hydrogen bonding and hydrophobic effect on the interactions of cellulose.
View Article and Find Full Text PDFIn this work we study the behaviour at interfaces and the micelle self-assembly of a cationic surfactant (CTAB) by Molecular Dynamics (MD) simulations of coarse-grained models. We consider both the standard (with explicit water) Martini force field and the implicit solvent version of the Martini force field (Dry Martini). First, we study the behaviour of CTAB at a water/vacuum interface, at a water/organic solvent interface and in a pre-assembled CTAB micelle using both standard and Dry Martini and all-atomic simulations.
View Article and Find Full Text PDFLigand-receptor binding is of utmost importance in several biologically related disciplines. Ligand binding assays (LBA) use the high specificity and high affinity of ligands to detect, target or measure a specific receptors. One particular example of ligand binding assays are Antibody conjugated Nanoparticles (AcNPs), edge-cutting technologies that are present in several novel biomedical approaches for imaging, detection and treatment of diseases.
View Article and Find Full Text PDFWe study the potential of mean force for pairs of parallel flat surfaces with attractive electrostatic interactions by employing model systems functionalized with different charged, hydrophobic and hydrophilic groups. We study the way in which the local environment (hydrophobic or hydrophilic moieties) modulates the interaction between the attractive charged groups on the plates by removing or attracting nearby water and thus screening or not the electrostatic interaction. To explicitly account for the role of the solvent and the local hydrophobicity, we also perform studies in vacuo.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
November 2017
Collagen fibrils are a very important component in most of the connective tissue in humans. An important process associated with several physiological and pathological states is the degradation of collagen. Collagen degradation is usually mediated by enzymatic and non-enzymatic processes.
View Article and Find Full Text PDFBy combining the local structure index with potential energy minimisations we study the local environment of the water molecules for a couple of water models, TIP5P-Ew and SPC/E, in order to characterise low- and high-density "species". Both models show a similar behaviour within the supercooled regime, with two clearly distinguishable populations of unstructured and structured molecules, the fraction of the latter increasing with supercooling. Additionally, for TIP5P-Ew, we find that the structured component vanishes quickly at the normal liquid regime (above the melting temperature).
View Article and Find Full Text PDFIntravaginal ring technology is generally limited to releasing low molecular weight species that can diffuse through the ring elastomer. To increase the diversity of drugs that can be delivered from intravaginal rings, we designed an IVR that contains a drug matrix encapsulated in the core of the IVR whereby the mechanism of drug release is uncoupled from the interaction of the drug with the ring elastomer. We call the device a flux controlled pump, and it is comprised of compressed pellets of a mixture of drug and hydroxypropyl cellulose within the hollow core of the ring.
View Article and Find Full Text PDFUsing extensive molecular dynamics simulations combined with a novel approach to analyze the molecular displacements we analyzed the change in the dynamics above and below the crossover temperature T(x) for supercooled water. Our findings suggest that the crossover from fragile to strong glass former occurring at T(x) is related with a change in the diffusion mechanism evidencing the presence of jump-like diffusion at lower temperatures. Also we observe that fluctuations of the local environments are intimately connected with fluctuations in the size and the amount of cooperative cluster of mobile molecules, and in particular we find a highly cooperative nature of the motion at low temperatures.
View Article and Find Full Text PDFThe temperature scale of simple water models in general does not coincide with the natural one. Therefore, in order to make a meaningful evaluation of different water models, a temperature rescaling is necessary. In this paper, we introduce a rescaling using the melting temperature and the temperature corresponding to the maximum of the heat capacity to evaluate four common water models (TIP4P-Ew, TIP4P-2005, TIP5P-Ew and Six-Sites) in the supercooled regime.
View Article and Find Full Text PDF