Publications by authors named "David C Harmes"

Separations of complex peptide mixtures have been a common target application for two-dimensional liquid chromatography over the last few decades. These separations have most frequently been carried out at the capillary scale, with columns on the order of 75 µm i.d.

View Article and Find Full Text PDF

Monoclonal antibodies (mAb) and related molecules are being developed at a remarkable pace as new therapeutics for the treatment of diseases ranging from cancer to inflammatory disorders. However, characterization of these molecules at all stages of development and manufacturing presents tremendous challenges to existing analytical technologies because of their large size (ca. 150 kDa) and inherent heterogeneity resulting from complex glycosylation patterns and other post-translational modifications.

View Article and Find Full Text PDF

Comprehensive two-dimensional liquid chromatography (LC × LC) has been gaining popularity for the analysis of complex samples in a wide range of fields including metabolomics, environmental analysis, and food analysis. While LC × LC can provide greater chromatographic resolution than one-dimensional LC (1D-LC), overlapping peaks are often still present in separations of complex samples, a problem that can be alleviated by chemometric curve resolution techniques such as multivariate curve resolution-alternating least squares (MCR-ALS). MCR-ALS has also been previously shown to assist in the quantitative analysis of LC x LC data by isolating pure analyte signals from background signals which are often present at higher levels in LC x LC compared to 1D-LC.

View Article and Find Full Text PDF

As research, development, and manufacturing of biosimilar protein therapeutics proliferates, there is great interest in the continued development of a portfolio of complementary analytical methods that can be used to efficiently and effectively characterize biosimilar candidate materials relative to the respective reference (i.e., originator) molecule.

View Article and Find Full Text PDF

In this proof-of-concept study, rituximab, which is a reference therapeutic monoclonal antibody (mAb), was characterized through the implementation of online, selective comprehensive two-dimensional liquid chromatography (sLC×LC) coupled with mass spectrometry (MS), using a middle-up approach. In this setup, cation exchange chromatography (CEX) and reverse-phase liquid chromatography (RPLC) were used as the first and second separation dimensions, respectively. As illustrated in this work, the combination of these two chromatographic modes allows a direct assignment of the identities of CEX peaks, using data from the TOF/MS detector, because RPLC is directly compatible with MS detection, whereas CEX is not.

View Article and Find Full Text PDF

Two persistent impediments to wider adoption of two-dimensional liquid chromatography (2D-LC) are the perceptions that 2D methods are generally less sensitive than 1D ones, and that coupling of certain separation modes in a 2D system is difficult because of the negative impact of the effluent of the first separation on the second separation. In this work we address these problems in the specific case where reversed-phase separations are used in both dimensions of a 2D-LC system, but the pH is varied such that the ionization state of carboxylic acid analytes is different (i.e.

View Article and Find Full Text PDF

In this paper, we describe the findings of a study aimed at assessing the detection sensitivity of comprehensive two-dimensional high-performance liquid chromatography (LCxLC) separation of a degraded active pharmaceutical ingredient (API) with UV absorption as the detection technique. Specifically, we have examined the impact of the volume and solvent composition (referred to as "interface conditions") of fractions of first-dimension column effluent transferred to the second dimension for further separation on the ability to resolve and detect low-abundance compounds. Historically, LCxLC has been perceived as being inferior to 1D-LC from the point of view of detection sensitivity.

View Article and Find Full Text PDF

Various implementations of two-dimensional high-performance liquid chromatography are increasingly being developed and applied to the analysis of complex materials, including those encountered in the analysis of foods, beverages, and nutraceuticals. Previously, we introduced the concept of selective comprehensive two-dimensional liquid chromatography (sLC × LC) as a hybrid between the more conventional, but extreme opposite sampling modes of heartcutting (LC-LC) and fully comprehensive (LC × LC) 2D separation. The sLC × LC approach breaks the link between first dimension ((1)D) sampling time and second dimension ((2)D) analysis time that is faced in LC × LC and allows very rapid (as low as 1 s) sampling of highly efficient (1)D separations, while at the same time allowing efficient (2)D separations on the timescale of tens of seconds.

View Article and Find Full Text PDF

Cellular quiescence is a state of reversible cell cycle arrest and has more recently been shown to be a blockade to differentiation and to correlate with resistance to cancer chemotherapeutics and other xenobiotics; features that are common to adult stem cells and possibly tumor stem cells. The biphasic kinetics of mammary regeneration, coupled to its cyclic endocrine control suggest that mammary stem cells most likely divide during a narrow window of the regenerative cycle and return to a state of quiescence. This would enable them to retain their proliferative capacity, resist differentiation signals and preserve their prolonged life span.

View Article and Find Full Text PDF

Mammary epithelial regeneration implies the existence of cellular progenitors with retained replicative capacity, prolonged lifespan and developmental potency. Evidence exists that deltaN-p63 isoforms preserve these features by modulating p53 activity in basal epithelia. deltaN-p63 mRNA levels decline at the onset of differentiation suggesting that its transcriptional regulation may contribute to the initiation of differentiation.

View Article and Find Full Text PDF