A synthetic route to orthogonally protected, enantiomerically pure 2-substituted piperazines is described. Starting from α-amino acids, within four steps chiral 2-substituted piperazines are obtained. The key transformation involves an aza-Michael addition between an orthogonally bis-protected chiral 1,2-diamine and the in situ generated vinyl diphenyl sulfonium salt derived from 2-bromoethyl-diphenylsulfonium triflate.
View Article and Find Full Text PDFTrends Biochem Sci
December 2017
Methylation of outer membrane proteins (OMPs) has been implicated in bacterial virulence. Lysine methylation in rickettsial OmpB is correlated with rickettsial virulence, and N- and O-methylations are also observed in virulence-relevant OMPs from several pathogenic bacteria that cause typhus, leptospirosis, tuberculosis, and anaplasmosis. We summarize recent findings on the structure of methylated OmpB, biochemical characterization, and crystal structures of OmpB methyltransferases.
View Article and Find Full Text PDFRickettsia belong to a family of Gram-negative obligate intracellular infectious bacteria that are the causative agents of typhus and spotted fever. Outer membrane protein B (OmpB) occurs in all rickettsial species, serves as a protective envelope, mediates host cell adhesion and invasion, and is a major immunodominant antigen. OmpBs from virulent strains contain multiple trimethylated lysine residues, whereas the avirulent strain contains mainly monomethyllysine.
View Article and Find Full Text PDFMethylation of rickettsial OmpB (outer membrane protein B) has been implicated in bacterial virulence. Rickettsial methyltransferases RP789 and RP027-028 are the first biochemically characterized methyltransferases to catalyze methylation of outer membrane protein (OMP). Methylation in OMP remains poorly understood.
View Article and Find Full Text PDFRickettsia prowazekii, the etiologic agent of epidemic typhus, is a potential biological threat agent. Its outer membrane protein B (OmpB) is an immunodominant antigen and plays roles as protective envelope and as adhesins. The observation of the correlation between methylation of lysine residues in rickettsial OmpB and bacterial virulence has suggested the importance of an enzymatic system for the methylation of OmpB.
View Article and Find Full Text PDFFAT10, also known as diubiquitin, has been implicated in the regulation of diverse cellular processes, including mitosis, immune response, and apoptosis. We seek to identify FAT10-targeted proteins, an essential step in elucidating the physiological function of FAT10. To this end, human FAT10 or its non-conjugatable derivative, FAT10ΔGG, was overexpressed in HEK293 cells.
View Article and Find Full Text PDFQuinolinol derivatives were found to be effective inhibitors of botulinum neurotoxin serotype A (BoNT/A). Studies of the inhibition and binding of 7-(phenyl(8-quinolinylamino)methyl)-8-quinolinol (QAQ) to the light chain domain (BoNT/A LC) showed that QAQ is a non-competitive inhibitor for the zinc protease activity. Binding and molecular modeling studies reveal that QAQ binds to a hydrophobic pocket near the active site.
View Article and Find Full Text PDFAn integrated strategy that combined in silico screening and tiered biochemical assays (enzymatic, in vitro, and ex vivo) was used to identify and characterize effective small-molecule inhibitors of Clostridium botulinum neurotoxin serotype A (BoNT/A). Virtual screening was initially performed by computationally docking compounds of the National Cancer Institute (NCI) database into the active site of BoNT/A light chain (LC). A total of 100 high-scoring compounds were evaluated in a high-performance liquid chromatography (HPLC)-based protease assay using recombinant full-length BoNT/A LC.
View Article and Find Full Text PDFAlthough it is conceivable that cancer preventive isothiocyanates (ITCs), a family of compounds in cruciferous vegetables, induce cell cycle arrest and apoptosis through a mechanism involving oxidative stress, our study shows that binding to cellular proteins correlates with their potencies of apoptosis induction. More recently, we showed that ITCs bind selectively to tubulins. The differential binding affinities toward tubulin among benzyl isothiocyanate, phenethyl isothiocyanate, and sulforaphane correlate well with their potencies of inducing tubulin conformation changes, microtubule depolymerization, and eventual cell cycle arrest and apoptosis in human lung cancer A549 cells.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase-1 (PARP-1) is the most abundant and the best-studied isoform of a family of enzymes that catalyze the polymerization of ADP-ribose from NAD(+) onto target proteins. PARP-1 is well known to involve in DNA repair, genomic stability maintenance, transcription regulation, apoptosis, and necrosis. Polyubiquitylation targets proteins towards degradation and regulates cell cycle progression, transcription, and apoptosis.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2008
The functions of evolved mammalian supramolecular assemblies and extensions of enzymes are not well understood. Human lysyl-tRNA synthetase (hKRS) only upon the removal of the amino-terminal extension (hKRSDelta60) bound to EF1alpha and was stimulated by EF1alphain vitro. HKRS and hKRSDelta60 were also differentially stimulated by aspartyl-tRNA synthetase (AspRS) from the multi-synthetase complex.
View Article and Find Full Text PDFFusion and affinity tags are popular tools for the expression of mammalian proteins in bacteria. To facilitate the selection of expression approaches, a systematic comparison was performed. We cloned, sequenced, and expressed in Escherichia coli ubiquitin- and SUMO-hDRS fusion proteins with biotin- or 6xHis-tags.
View Article and Find Full Text PDFThree highly homologous small ubiquitin-related modifier (SUMO) proteins have been identified in mammals. Modifications of proteins by SUMO-1 have been shown to regulate transcription, nucleocytoplasmic transport, protein stability, and protein-protein interactions. Relative to SUMO-1, little is known about the functions of SUMO-2 or SUMO-3 (referred to as SUMO-2/3).
View Article and Find Full Text PDFUbiquitin-like modifiers (UBLs) contain ubiquitin homology domains and can covalently modify target proteins in a manner similar to ubiquitylation. In this study, we revealed a general proteomic approach to elucidate the enzymatic pathways and identify target proteins for three UBLs: SUMO-2, SUMO-3, and NEDD8. Expression plasmids containing the cDNAs of Myc/6xHis doubly-tagged processed or non-conjugatable forms of these UBLs were constructed.
View Article and Find Full Text PDFThe cholera toxin (CT) is a well-known inducer of cAMP and cAMP regulates gene expression of many genes. However, little is known as to the alterations in gene expression in response to CT. Here the alterations of the expression of 800 selected genes in response to CT were examined using cDNA microarrays.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) are extremely toxic. The metalloproteases associated with the toxins cleave proteins essential for neurotransmitter secretion. Inhibitors of the metalloprotease are currently sought to control the toxicity of BoNTs.
View Article and Find Full Text PDFCholera toxin (CT) is well known as an inducer of the accumulation of cellular cAMP through the ADP-ribosylation of the Gs protein by CT. CT is also one of the most powerful mucosal adjuvants. However, the molecular mechanisms of the CT adjuvanticity are not well understood.
View Article and Find Full Text PDFCholera toxin (CT) is the causative agent of cholera, binds to GM1 glycosphingolipids, induces the production of cellular cAMP and is also a very powerful mucosal adjuvant. Although the mechanism of the CT induction of cAMP production is well understood, molecular mechanisms of the adjuvanticity of cholera toxin are yet to be delineated. Here, we examined the interaction of CT with human lymphocytes and monocytes by analyzing the host transcriptional profiles using cDNA arrays.
View Article and Find Full Text PDFSUMO, a small ubiquitin-related modifier, is known to covalently attach to a number of nuclear regulatory proteins such as p53, IkappaB, promyelocytic leukemia protein and c-Jun. The sumoylation reaction is catalyzed by the SUMO protease, which exposes the C-terminal active glycine residue of the nascent SUMO, the heterodimeric SUMO activating enzyme, the SUMO conjugating enzyme, Ubc9, and SUMO protein ligases, in a manner similar to ubiquitinylation. Identification of SUMO-regulated proteins is hampered by the fact that many sumoylated proteins are present at a level below normal detection limit.
View Article and Find Full Text PDFEukaryotic aminoacyl-tRNA synthetases have dispensable extensions appended at the amino- or carboxyl-terminus as compared to their bacterial counterparts. While a synthetic peptide corresponding to the basic amino-terminal extension in yeast Asp-tRNA synthetase binds to DNA, the extension in the intact protein evidently binds to tRNA and enhances the tRNA specificity of Asp-tRNA synthetase. On the other hand, the amino-terminal extension in human Asp-tRNA synthetase, both within the intact protein and as a synthetic peptide, binds to tRNA.
View Article and Find Full Text PDFUbiquitin has been used in protein expression for enhancing yields and biological activities of recombinant proteins. Biotin binds tightly and specifically to avidin and has been widely utilized as a tag for protein purification and monitoring. Here, we report a versatile system that takes the advantages of both biotin and ubiquitin for protein expression, purification, and monitoring.
View Article and Find Full Text PDFThe method of continuous variation, often known as the Job plot, has long been used for determining the stoichiometry of two interacting components. The correct binding ratio, n, is generally obtained when the total concentration of the reactants, C(o), is much greater than the dissociation constants involved. For non-cooperative binding systems, the stoichiometry varies between one and n as C(o) increases; whereas for positive cooperative systems, values larger than n may be observed at low C(o).
View Article and Find Full Text PDF