Publications by authors named "David C Fry"

Protein-protein interactions are associated with key activities and pathways in the cell, and in that regard are promising targets for drug discovery. However, in terms of small molecule drugs, this promise has not been realized. The physical nature of many protein-protein interaction surfaces renders them unable to support binding of small drug-like molecules.

View Article and Find Full Text PDF

The YAP-TEAD protein-protein interaction (PPI) mediates the oncogenic function of YAP, and inhibitors of this PPI have potential usage in treatment of YAP-involved cancers. Here we report the design and synthesis of potent cyclic peptide inhibitors of the YAP-TEAD interaction. A truncation study of YAP interface 3 peptide identified YAP(84-100) as a weak peptide inhibitor (IC50 = 37 μM), and an alanine scan revealed a beneficial mutation, D94A.

View Article and Find Full Text PDF

Protein-protein interaction (PPI) systems represent a rich potential source of targets for drug discovery, but historically have proven to be difficult, particularly in the lead identification stage. Application of the fragment-based approach may help toward success with this target class. To provide an example toward understanding the potential issues associated with such an application, we have deconstructed one of the best established protein-protein inhibitors, the Nutlin series that inhibits the interaction between MDM2 and p53, into fragments, and surveyed the resulting binding properties using heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR), surface plasmon resonance (SPR), and X-ray crystallography.

View Article and Find Full Text PDF

This systematic review describes successful examples of small-molecule inhibitors of protein-protein interactions, and compares their binding strategies to those employed by the natural protein partners. It extends and updates an earlier survey of this type (Fry DC, Curr Prot Pep Sci 2008; 9: 240-7). From analysis of these systems, common themes and lessons are presented that may assist future drug discovery efforts involving targets in this class.

View Article and Find Full Text PDF

Recent success stories concerning the targeting of protein-protein interactions (PPIs) have led to an increased focus on this challenging target class for drug discovery. This article explores various avenues to assess the druggability of PPIs and describes a druggability decision flow chart, which can be applied to any PPI target. This flow chart not only covers small molecules but also peptidomimetics, peptides and conformationally restricted peptides as potential modalities for targeting PPIs.

View Article and Find Full Text PDF

Protein-protein interactions represent a highly populated class of targets for drug discovery. However, such systems present a number of unique challenges. This review presents an analysis of individual protein-protein interaction systems which have recently yielded success in discovering drug-like inhibitors.

View Article and Find Full Text PDF

Inhibition of E3 ligase-substrate binding is the most direct approach for blocking protein ubiquitylation and degradation. However, protein-protein interactions have proven to be difficult targets for discovery of small molecules that bind at the interface and modulate protein activity in a selective manner. Recently, we developed the first potent and selective small-molecule inhibitors of the binding between MDM2 E3 ligase and its substrate p53 (Vassilev et al.

View Article and Find Full Text PDF

An increasing number of protein-protein interactions have been identified as potential intervention points for the development of anticancer agents. However, such systems have historically been considered high-risk targets due to the relatively large interaction surfaces involved in protein-protein binding. This characterization has to be reexamined as progress has been made recently in identifying small-molecule inhibitors of several protein-protein systems in oncology including the p53-MDM2 interaction.

View Article and Find Full Text PDF

MDM2 is a regulator of cell growth processes that acts by binding to the tumor suppressor protein p53 and ultimately restraining its activity. While inactivation of p53 by mutation is commonly observed in human cancers, a substantial percentage of tumors express wild type p53. In many of these cases, MDM2 is overexpressed, and it is believed that suppression of MDM2 activity could yield therapeutic benefits.

View Article and Find Full Text PDF

Using nuclear magnetic resonance (NMR) spectroscopy, we have determined the solution structures for a series of potent agonists for the human melanocortin-4 receptor (hMC4R), based on the cyclic peptide MT-II [Ac-Nle-cyclo-(Asp-Lys) (Asp-His-(D)Phe-Arg-Trp-Lys)-NH2]. Members of this series were designed to improve selectivity for MC4R versus the other melanocortin receptors, and to reduce the flexibility of the side chains. The most selective and rigid analog [penta-cyclo(D-K)-Asp-Apc-(D)Phe-Arg-(2S,3S)-beta-methylTrp-Lys-NH2] was found to be a full agonist of hMC4R with an EC50 of 11nM against hMC4R, and to exhibit 65-fold selectivity against hMC1R.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) methods were employed to study the interaction of the cytokine Interleukin-2 (IL-2) with the alpha-subunit of its receptor (IL-2Ralpha), and to help understand the behavior of small molecule inhibitors of this interaction. Heteronuclear (1)H-(15)N HSQC experiments were used to identify the interaction surface of (15)N-enriched Interleukin-2 ((15)N-IL-2) in complex with human IL-2Ralpha. In these experiments, chemical shift and line width changes in the heteronuclear single-quantum coherence (HSQC) spectra upon binding of (15)N-IL-2 enabled classification of NH atoms as either near to, or far from, the IL-2Ralpha interaction surface.

View Article and Find Full Text PDF