Publications by authors named "David C Bloom"

Vaccination with transiently activated replication-competent controlled herpesviruses (RCCVs) expressing influenza A virus hemagglutinins broadly protects mice against lethal influenza virus challenges. The non-replicating RCCVs can be activated to transiently replicate with high efficiency. Activation involves a brief heat treatment to the epidermal administration site in the presence of a drug.

View Article and Find Full Text PDF

A universal vaccine that generally prevents influenza virus infection and/or illness remains elusive. We have been exploring a novel approach to vaccination involving replication-competent controlled herpesviruses (RCCVs) that can be deliberately activated to replicate efficiently but only transiently in an administration site in the skin of a subject. The RCCVs are derived from a virulent wild-type herpesvirus strain that has been engineered to contain a heat shock promoter-based gene switch that controls the expression of, typically, two replication-essential viral genes.

View Article and Find Full Text PDF

The neurogenic niches within the central nervous system serve as essential reservoirs for neural precursor cells (NPCs), playing a crucial role in neurogenesis. However, these NPCs are particularly vulnerable to infection by the herpes simplex virus 1 (HSV-1). In the present study, we investigated the changes in the transcriptome of NPCs in response to HSV-1 infection using bulk RNA-Seq, compared to those of uninfected samples, at different time points post infection and in the presence or absence of antivirals.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) establishes lifelong latency in neuronal cells. Following a stressor, the virus reactivates from latency, virus is shed at the periphery and recurrent disease can occur. During latency, the viral lncRNA termed the latency-associated transcript (LAT) is known to accumulate to high abundance.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) establishes latency in neurons and expresses long noncoding RNAs termed the latency-associated transcripts (LATs). Two previous studies using HSV-1 recombinants containing deletions in the LAT promoter revealed opposing effects of the promoter deletion regarding the heterochromatinization of latent viral genomes in mice ganglia. Confounding variables in these studies include viral strains utilized (17 versus KOS), anatomical infection site (footpad versus eye) and infectious virus dose (500 versus 1 × 10 PFU), and to date the basis for the differences between the two studies remains unresolved.

View Article and Find Full Text PDF

The total synthesis of four novel mono-methoxy and hydroxyl substituted ring-A dihydronarciclasine derivatives enabled identification of the 7-hydroxyl derivative as a potent and selective antiviral agent targeting SARSCoV-2 and HSV-1. The concentration of this small molecule that inhibited HSV-1 infection by 50% (IC50), determined by using induced pluripotent stem cells (iPCS)-derived brain organ organoids generated from two iPCS lines, was estimated to be 0.504 µM and 0.

View Article and Find Full Text PDF

Solutions containing Ag nanoclusters, Ag, and higher oxidation state silver, generated from nanocrystalline silver dressings, were anti-inflammatory against porcine skin inflammation. The dressings have clinically-demonstrated broad-spectrum antimicrobial activity, suggesting application of nanosilver solutions in treating pulmonary infection. Nanosilver solutions were tested for antimicrobial efficacy; against HSV-1 and SARS-CoV-2; and nebulized in rats with acute pneumonia.

View Article and Find Full Text PDF

Intrauterine infections during pregnancy by herpes simplex virus (HSV) can cause significant neurodevelopmental deficits in the unborn/newborn, but clinical studies of pathogenesis are challenging, and while animal models can model some aspects of disease, in vitro studies of human neural cells provide a critical platform for more mechanistic studies. We utilized a reductionist approach to model neurodevelopmental outcomes of HSV-1 infection of neural rosettes, which represent the in vitro equivalent of differentiating neural tubes. Specifically, we employed early-stage brain organoids (ES-organoids) composed of human induced pluripotent stem cells (hiPSCs)-derived neural rosettes to investigate aspects of the potential neuropathological effects induced by the HSV-1 infections on neurodevelopment.

View Article and Find Full Text PDF

Suppressors of Cytokine Signaling (SOCS) are intracellular proteins that negatively regulate the induction of cytokines. Amongst these, SOCS1 and SOCS3 are particularly involved in inhibition of various interferons. Several viruses have hijacked this regulatory pathway: by inducing SOCS1and 3 early in infection, they suppress the host immune response.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) is a human pathogen capable of establishing lifelong latent infections that can reactivate under stress conditions. A viral immediate early protein that plays important roles in the HSV-1 lytic and latent infections is the viral E3 ubiquitin ligase, ICP0. ICP0 transactivates all temporal classes of HSV-1 genes and facilitates viral gene expression.

View Article and Find Full Text PDF

The dysregulation of host signaling pathways plays a critical role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and viral pathogenesis. While a number of viral proteins that can block type I IFN signaling have been identified, a comprehensive analysis of SARS-CoV-2 proteins in the regulation of other signaling pathways that can be critical for viral infection and its pathophysiology is still lacking. Here, we screened the effect of 21 SARS-CoV-2 proteins on 10 different host signaling pathways, namely, Wnt, p53, TGFβ, c-Myc, Hypoxia, Hippo, AP-1, Notch, Oct4/Sox2, and NF-κB, using a luciferase reporter assay.

View Article and Find Full Text PDF

HSV-1 is a human pathogen that establishes a lifelong infection in the host. HSV-1 is transported by retrograde axonal transport to sensory neurons in the peripheral nervous system where latent viral genomes can reactivate. The resulting virus travels via anterograde axonal transport to the periphery and can cause clinical disease.

View Article and Find Full Text PDF

Encephalitis, the most significant of the central nervous system (CNS) diseases caused by Herpes simplex virus 1 (HSV-1), may have long-term sequelae in survivors treated with acyclovir, the cause of which is unclear. HSV-1 exhibits a tropism toward neurogenic niches in CNS enriched with neural precursor cells (NPCs), which play a pivotal role in neurogenesis. NPCs are susceptible to HSV-1.

View Article and Find Full Text PDF

It has become widely appreciated that the spinal cord has significant neuroplastic potential, is not hard-wired, and that with traumatic injury and anatomical plasticity, the networks that we once understood now comprise a new anatomy. Harnessing advances in neuroanatomical tracing to map the neuronal networks of the intact and injured spinal cord has been crucial to elucidating this new spinal cord anatomy. Many new techniques have been developed to identify these networks using a variety of retrograde and anterograde tracers.

View Article and Find Full Text PDF

Background: Herpes simplex virus 1 (HSV-1) affects a large part of the adult population. Anti-HSV-1 drugs, such as acyclovir, target thymidine kinase and viral DNA polymerase. However, the emerging of resistance of HSV-1 alerts for the urgency in developing new antivirals with other therapeutic targets.

View Article and Find Full Text PDF

Alzheimer's disease is a progressive neurodegenerative disease characterized neuropathologically by presence of extracellular amyloid plaques composed of fibrillar amyloid beta (Aβ) peptides and intracellular neurofibrillary tangles. Post-mortem and studies implicate HSV-1 infection in the brain as a precipitating factor in disease/pathology initiation. HSV-1 infection of two-dimensional (2D) neuronal cultures causes intracellular accumulation of Aβ42 peptide, but these 2D models do not recapitulate the three-dimensional (3D) architecture of brain tissue.

View Article and Find Full Text PDF

The regulatory functions of 10 individual viral microRNAs (miRNAs) that are abundantly expressed from the herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) region remain largely unknown. Here, we focus on HSV-1 miRNA miR-H8, which is within the LAT 3p exon, antisense to the first intron of ICP0, and has previously been shown to target a host glycosylphosphatidylinositol (GPI)-anchoring pathway. However, the functions of this miRNA have not been assessed in the context of the viral genome during infection.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) can induce damage in brain regions that include the hippocampus and associated limbic structures. These neurogenic niches are important because they are associated with memory formation and are highly enriched with neural progenitor cells (NPCs). The susceptibility and fate of HSV-1-infected NPCs are largely unexplored.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) establishes a lifelong latent infection in peripheral nerve ganglia. Periodically, the virus reactivates from this latent reservoir and is transported to the original site of infection. Strains of HSV-1 have been noted to vary greatly in their virulence and reactivation efficiencies in animal models.

View Article and Find Full Text PDF

Over the last few years, we have been evaluating a novel paradigm for immunization using viruses or virus-based vectors. Safety is provided not by attenuation or inactivation of vaccine viruses, but by the introduction into the viral genomes of genetic mechanisms that allow for stringent, deliberate spatial and temporal control of virus replication. The resulting replication-competent controlled viruses (RCCVs) can be activated to undergo one or, if desired, several rounds of efficient replication at the inoculation site, but are nonreplicating in the absence of activation.

View Article and Find Full Text PDF

During all stages of infection, herpes simplex virus 1 (HSV-1) expresses viral microRNAs (miRNAs). There are at least 20 confirmed HSV-1 miRNAs, yet the roles of individual miRNAs in the context of viral infection remain largely uncharacterized. We constructed a recombinant virus lacking the sequences for miR-H1-5p and miR-H6-3p (17dmiR-H1/H6).

View Article and Find Full Text PDF

HSV-1 is one of the most prevalent viruses worldwide, and due to the limited therapies mainly with acyclovir and analogues and the emergence of acyclovir (ACV) resistant strains, the search for new drugs with different modes of action is needed. This study identified compounds that bind in silico to cyclin dependent kinase 2 (CDK2), a cellular enzyme required for efficient HSV-1 replication, and have anti-HSV-1 activity. Compounds obtained from virtual screening by Pharmit were filtered in FAF-Drugs4 for good pharmacokinetic and toxicological profiles and submitted to molecular docking on CDK2 using Autodock Vina.

View Article and Find Full Text PDF

Here we present a personalized viral genomics approach to investigating a rare case of perinatal herpes simplex virus 1 (HSV-1) transmission that ended in death of both mother and neonate. We sought to determine whether the virus involved in this rare case had any unusual features that may have contributed to the dire patient outcome. A pregnant woman with negative HerpeSelect antibody test underwent cesarean section at 30 wk gestation and died the same day.

View Article and Find Full Text PDF

Background: Infection by herpes simplex type-1 virus (HSV-1) causes several pathological processes, including cutaneous, oral and genital infections, fatal encephalitis and cognitive dysfunction due to grey matter loss. Acyclovir is the reference compound used as HSV-1 antiviral therapy. However, with the emergence of HSV-resistant strains to current antiviral drugs, development of new antiviral agents with distinct modes of action is urgently needed.

View Article and Find Full Text PDF