Publications by authors named "David Bulmer"

Background And Purpose: Abdominal pain is a leading cause of morbidity for people living with gastrointestinal disease. Whereas the transient receptor potential vanilloid 4 (TRPV4) ion channel has been implicated in the pathogenesis of abdominal pain, the relative paucity of TRPV4 expression in colon-projecting sensory neurons suggests that non-neuronal cells may contribute to TRPV4-mediated nociceptor stimulation.

Experimental Approach: Changes in murine colonic afferent activity were examined using ex vivo electrophysiology in tissues with the gut mucosa present or removed.

View Article and Find Full Text PDF

The development of nonopioid analgesics for the treatment of abdominal pain is a pressing clinical problem. To address this, we examined the expression of Gi/o-coupled receptors, which typically inhibit nociceptor activation, in colonic sensory neurons. This led to the identification of the orphan receptor GPR35 as a visceral analgesic drug target because of its marked coexpression with transient receptor potential ankyrin 1 (TRPA1), a mediator of noxious mechanotransduction in the bowel.

View Article and Find Full Text PDF
Article Synopsis
  • Irritable bowel syndrome (IBS) is a common digestive disorder that causes abdominal pain and bowel issues, and dietary changes, especially reducing FODMAPs, are essential for treatment.
  • A study involving 56 IBS patients revealed two microbial subtypes: IBS-P (which responded better to a low FODMAP diet) and IBS-H, with IBS-P showing higher levels of short chain fatty acids (SCFAs) before diet modification.
  • After four weeks on the low FODMAP diet, IBS-P patients had a significant decrease in SCFA levels and reported greater symptom improvement compared to IBS-H, suggesting that managing SCFAs through diet can enhance relief from IBS symptoms.
View Article and Find Full Text PDF

Background: Patients (20%-50%) with inflammatory bowel disease (IBD) experience chronic abdominal pain during remission. The clinical features of IBD patients with abdominal pain during remission remain poorly characterized. This cross-sectional pilot study aimed to assess patient recruitment, adherence, and feedback to optimize questionnaires for future use and to determine the clinical features that distinguish IBD patients in remission with and without abdominal pain.

View Article and Find Full Text PDF

The intestinal barrier plays a crucial role in homeostasis by both facilitating the absorption of nutrients and fluids and providing a tight shield to prevent the invasion by either pathogen or commensal microorganisms. Intestinal barrier malfunction is associated with systemic inflammation, oxidative stress, and decreased insulin sensitivity, which may lead to the dysregulation of other tissues. Therefore, a deeper understanding of physiological aspects related to an enhanced barrier function is of significant scientific and clinical relevance.

View Article and Find Full Text PDF

The pressing need for safer, more efficacious analgesics is felt worldwide. Preclinical tests in animal models of painful conditions represent one of the earliest checkpoints novel therapeutics must negotiate before consideration for human use. Traditionally, the pain status of laboratory animals has been inferred from evoked nociceptive assays that measure their responses to noxious stimuli.

View Article and Find Full Text PDF

Ca imaging is frequently used in the investigation of sensory neuronal function and nociception. In vitro imaging of acutely dissociated sensory neurons using membrane-permeant fluorescent Ca indicators remains the most common approach to study Ca signalling in sensory neurons. Fluo4 is a popular choice of single-wavelength indicator due to its brightness, high affinity for Ca and ease of use.

View Article and Find Full Text PDF

Visceral pain is a leading cause of morbidity in inflammatory bowel disease (IBD), contributing significantly to reduced quality of life. Currently available analgesics often lack efficacy or have intolerable side effects, driving the need for a more complete understanding of the mechanisms causing pain. Whole transcriptome gene expression analysis was performed by bulk RNA sequencing of colonic biopsies from patients with ulcerative colitis (UC) and Crohn's disease (CD) reporting abdominal pain and compared with noninflamed control biopsies.

View Article and Find Full Text PDF

Devices interfacing with biological tissues can provide valuable insights into function, disease, and metabolism through electrical and mechanical signals. However, certain neuromuscular tissues, like those in the gastrointestinal tract, undergo significant strains of up to 40%. Conventional inextensible devices cannot capture the dynamic responses in these tissues.

View Article and Find Full Text PDF

Infectious diseases are increasingly recognized as a major threat worldwide due to the rise of antimicrobial resistance and the emergence of novel pathogens. In vitro models that can adequately mimic in vivo gastrointestinal physiology are in high demand to elucidate mechanisms behind pathogen infectivity, and to aid the design of effective preventive and therapeutic interventions. There exists a trade-off between simple and high throughput models and those that are more complex and physiologically relevant.

View Article and Find Full Text PDF

Air liquid interfaced (ALI) epithelial barriers are essential for homeostatic functions such as nutrient transport and immunological protection. Dysfunction of such barriers are implicated in a variety of autoimmune and inflammatory disorders and, as such, sensors capable of monitoring barrier health are integral for disease modelling, diagnostics and drug screening applications. To date, gold-standard electrical methods for detecting barrier resistance require rigid electrodes bathed in an electrolyte, which limits compatibility with biological architectures and is non-physiological for ALI.

View Article and Find Full Text PDF

In numerous subtypes of central and peripheral neurons, small and intermediate conductance Ca-activated K (SK and IK, respectively) channels are important regulators of neuronal excitability. Transcripts encoding SK channel subunits, as well as the closely related IK subunit, are coexpressed in the soma of colonic afferent neurons with receptors for the algogenic mediators ATP and bradykinin, P2X3 and B, highlighting the potential utility of these channels as drug targets for the treatment of abdominal pain in gastrointestinal diseases such as irritable bowel syndrome. Despite this, pretreatment with the dual SK/IK channel opener SKA-31 had no effect on the colonic afferent response to ATP, bradykinin, or noxious ramp distention of the colon.

View Article and Find Full Text PDF

Visceral hypersensitivity, a hallmark of disorders of the gut-brain axis, is associated with exposure to early-life stress (ELS). Activation of neuronal β3-adrenoceptors (AR) has been shown to alter central and peripheral levels of tryptophan and reduce visceral hypersensitivity. In this study, we aimed to determine the potential of a β3-AR agonist in reducing ELS-induced visceral hypersensitivity and possible underlying mechanisms.

View Article and Find Full Text PDF

The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis.

View Article and Find Full Text PDF

Visceral pain is a leading cause of morbidity in gastrointestinal diseases, which is exacerbated by the gut-related side-effects of many analgesics. New treatments are needed and further understanding of the mediators and mechanisms underpinning visceral nociception in disease states is required to facilitate this. The pro-inflammatory cytokine TNFα is linked to pain in both patients with inflammatory bowel disease and irritable bowel syndrome, and has been shown to sensitize colonic sensory neurons.

View Article and Find Full Text PDF

Osteoporosis is a skeletal disease which is characterised by reduced bone mass and microarchitecture, with a subsequent loss of strength that predisposes to fragility and risk of fractures. The pathogenesis of falling bone mineral density, ultimately leading to a diagnosis of osteoporosis is incompletely understood but the disease is currently thought to be multifactorial. Humans are known to accumulate mitochondrial mutations and respiratory chain deficiency with age and mounting evidence suggests that this may indeed be the overarching cause intrinsic to the changing phenotype in advancing age and age-related disease.

View Article and Find Full Text PDF

Patients with inflammatory bowel disease often experience ongoing pain even after achieving mucosal healing (i.e., post-inflammatory pain).

View Article and Find Full Text PDF

Microbial degradation of subsurface organic contaminants is often hindered by the low availability of both contaminants and nutrients, especially phosphorus (P). The use of activated carbon and traditional P fertilizers to overcome these challenges has proved ineffective; therefore, we sought to find an innovative and effective solution. By heating bone meal-derived organic residues in water in a closed reactor, we synthesized nonporous colloids composed of aromatic and aliphatic structures linked to P groups.

View Article and Find Full Text PDF

Introduction: Despite heterogeneity, an increased prevalence of psychological comorbidity and an altered pronociceptive gut microenvironment have repeatedly emerged as causative pathophysiology in patients with irritable bowel syndrome (IBS). Our aim was to study these phenomena by comparing gut-related symptoms, psychological scores, and biopsy samples generated from a detailed diarrhea-predominant IBS patient (IBS-D) cohort before their entry into a previously reported clinical trial.

Methods: Data were generated from 42 patients with IBS-D who completed a daily 2-week bowel symptom diary, the Hospital Anxiety and Depression score, and the Patient Health Questionnaire-12 Somatic Symptom score and underwent unprepared flexible sigmoidoscopy.

View Article and Find Full Text PDF

In modern societies, biodegradation of hydrophobic pollutants generated by industry is important for environmental and human health. In Gram-negative bacteria, biodegradation depends on facilitated diffusion of the pollutant substrates into the cell, mediated by specialised outer membrane (OM) channels. Here we show, via a combined experimental and computational approach, that the uptake of monoaromatic hydrocarbons such as toluene in Pseudomonas putida F1 (PpF1) occurs via lateral diffusion through FadL channels.

View Article and Find Full Text PDF

Pain is a principal contributor to the global burden of arthritis with peripheral sensitization being a major cause of arthritis-related pain. Within the knee joint, distal endings of dorsal root ganglion neurons (knee neurons) interact with fibroblast-like synoviocytes (FLS) and the inflammatory mediators they secrete, which are thought to promote peripheral sensitization. Correspondingly, RNA sequencing has demonstrated detectable levels of proinflammatory genes in FLS derived from arthritis patients.

View Article and Find Full Text PDF

Vibrio spp. play a vital role in the recycling of chitin in oceans, but several Vibrio strains are highly infectious to aquatic animals and humans. These bacteria require chitin for growth; thus, potent inhibitors of chitin-degrading enzymes could serve as candidate drugs against Vibrio infections.

View Article and Find Full Text PDF

Acid sensing in the gastrointestinal tract is required for gut homeostasis and the detection of tissue acidosis caused by ischaemia, inflammation and infection. In the colorectum, activation of colonic afferents by low pH contributes to visceral hypersensitivity and abdominal pain in human disease including during inflammatory bowel disease. The naked mole-rat () shows no pain-related behaviour to subcutaneous acid injection and cutaneous afferents are insensitive to acid, an adaptation thought to be a consequence of the subterranean, likely hypercapnic, environment in which it lives.

View Article and Find Full Text PDF

Galanin is a neuropeptide expressed by sensory neurones innervating the gastrointestinal (GI) tract. Galanin displays inhibitory effects on vagal afferent signaling within the upper GI tract, and the goal of this study was to determine the actions of galanin on colonic spinal afferent function. Specifically, we sought to evaluate the effect of galanin on lumbar splanchnic nerve (LSN) mechanosensitivity to noxious distending pressures and the development of hypersensitivity in the presence of inflammatory stimuli and colitis.

View Article and Find Full Text PDF