Bayesian phylogenetics is now facing a critical point. Over the last 20 years, Bayesian methods have reshaped phylogenetic inference and gained widespread popularity due to their high accuracy, the ability to quantify the uncertainty of inferences and the possibility of accommodating multiple aspects of evolutionary processes in the models that are used. Unfortunately, Bayesian methods are computationally expensive, and typical applications involve at most a few hundred sequences.
View Article and Find Full Text PDFStatistical phylogenetic analysis currently relies on complex, dedicated software packages, making it difficult for evolutionary biologists to explore new models and inference strategies. Recent years have seen more generic solutions based on probabilistic graphical models, but this formalism can only partly express phylogenetic problems. Here, we show that universal probabilistic programming languages (PPLs) solve the expressivity problem, while still supporting automated generation of efficient inference algorithms.
View Article and Find Full Text PDF