Geometric phase may enable inherently fault-tolerant quantum computation. However, due to potential decoherence effects, it is important to understand how such phases arise for mixed input states. We report the first experiment to measure mixed-state geometric phases in optics, using a Mach-Zehnder interferometer, and polarization mixed states that are produced in two different ways: decohering pure states with birefringent elements; and producing a nonmaximally entangled state of two photons and tracing over one of them, a form of remote state preparation.
View Article and Find Full Text PDFUsing correlated photons from parametric down-conversion, we extend the boundaries of experimentally accessible two-qubit Hilbert space. Specifically, we have created and characterized maximally entangled mixed states that lie above the Werner boundary in the linear entropy-tangle plane. In addition, we demonstrate that such states can be efficiently concentrated, simultaneously increasing both the purity and the degree of entanglement.
View Article and Find Full Text PDF