Background: Geant4, a Monte Carlo Simulation Toolkit extensively used in bio-medical physics, is in continuous evolution to include newest research findings to improve its accuracy and to respond to the evolving needs of a very diverse user community. In 2014, the G4-Med benchmarking system was born from the effort of the Geant4 Medical Simulation Benchmarking Group, to benchmark and monitor the evolution of Geant4 for medical physics applications. The G4-Med system was first described in our Medical Physics Special Report published in 2021.
View Article and Find Full Text PDFthe recently developed V79-RBEbiological weighting function (BWF) model is a simple and robust tool for a fast relative biological effectiveness (RBE) assessment for comparing different exposure conditions in particle therapy. In this study, the RBEderived by this model (through the particle and heavy ion transport code system (PHITS) simulatedspectra) is compared with values of RBEusing experimentally derivedspectra from a silicon-on-insulator (SOI) microdosimeter.experimentally measuredspectra are used to calculate an RBEvalue utilizing the V79-RBEBWF model as well as the modified microdosimetric kinetic model (MKM) to produce an RBE-vs-trend for a wide range of ions.
View Article and Find Full Text PDFPurpose: This study aims to validate the Light-Ion Quantum Molecular Dynamics (LIQMD) model, an advanced version of the QMD model for more accurate simulations in hadron therapy, incorporated into Geant4 (release 11.2).
Methods: Two sets of experiments are employed.
Radiat Prot Dosimetry
October 2023
The metrological problem of interpreting ionisation-based micro- and nanodosimetric measurements in terms of quantities proportional to energy imparted becomes particularly relevant when the sensitive volume (SV) size is in the nanometre range. At these scales, a constant W-value cannot be assumed, and the stochastics of the energy transfer per single collision could play a more important role. This problem was recently analysed by our group by means of track-structure Monte Carlo simulations with the Geant4-DNA code, finding a strong correlation between the energy imparted and ionisation yield also for SV diameters of 1 nm.
View Article and Find Full Text PDFThe Mayo Clinic Florida Integrated Oncology Building will be the home of the first spot-scanning only carbon/proton hybrid therapy system by Hitachi, Ltd. It will provide proton beams up to kinetic energies of 230 MeV and carbon beams up to 430 MeV nfor clinical deployment. To provide adequate radiation protection, the Geant4 (v10.
View Article and Find Full Text PDF. Although in heavy-ion therapy, the quantum molecular dynamics (QMD) model is one of the most fundamental physics models providing an accurate daughter-ion production yield in the final state, there are still non-negligible differences with the experimental results. The aim of this study is to improve fragment production in water phantoms by developing a more accurate QMD model in Geant4.
View Article and Find Full Text PDFIn this study, Monte Carlo codes, Geant4 and MCNP6, were used to characterize the fast neutron therapeutic beam produced at iThemba LABS in South Africa. Experimental and simulation results were compared using the latest generation of Silicon on Insulator (SOI) microdosimeters from the Centre for Medical Radiation Physics (CMRP). Geant4 and MCNP6 were able to successfully model the neutron gantry and simulate the expected neutron energy spectrum produced from the reaction by protons bombarding a Be target.
View Article and Find Full Text PDFAuger emitting radioisotopes are of great interest in targeted radiotherapy because, once internalised in the tumour cells, they can deliver dose locally to the radiation sensitive targets, while not affecting surrounding cells. Geant4 is a Monte Carlo code widely used to characterise the physics mechanism at the basis of targeted radiotherapy. In this work, we benchmarked the modelling of the emission of Auger electrons in Geant4 deriving from the decay of I, I, I radionuclides against existing theoretical approaches.
View Article and Find Full Text PDFPurpose: A 5 and 10 μm thin silicon on insulator (SOI) 3D mushroom microdosimeter was used to characterize both the in-field and out-of-field of a 62 MeV proton beam.
Methods: The SOI mushroom microdosimeter consisted of an array of cylindrical sensitive volumes (SVs), developed by the Centre for Medical Radiation Physics, University of Wollongong, was irradiated with 62 MeV protons at the CATANA (Centro di AdroTerapia Applicazioni Nucleari Avanzate) facility in Catania, Italy, a facility dedicated to the radiation treatment of ocular melanomas. Dose mean lineal energy, ( ), values were obtained at various depths in PMMA along a pristine and spread out Bragg peak (SOBP).
In this study, the survival fraction (SF) and relative biological effectiveness (RBE) of pancreatic cancer cells exposed to spread-out Bragg peak helium, carbon, oxygen, and neon ion beams are estimated from the measured microdosimetric spectra using a microdosimeter and the application of the microdosimetric kinetic (MK) model. To measure the microdosimetric spectra, a 3D mushroom silicon-on-insulator microdosimeter connected to low noise readout electronics (MicroPlus probe) was used. The parameters of the MK model were determined for pancreatic cancer cells such that the calculated SFs reproduced previously reported in vitro SF data.
View Article and Find Full Text PDFPurpose: The main advantages of charged particle radiotherapy compared to conventional X-ray external beam radiotherapy are a better tumor conformality coupled with the capability of treating deep-seated radio-resistant tumors. This work investigates the possibility to use oxygen beams for hadron therapy, as an alternative to carbon ions.
Materials And Methods: Oxygen ions have the advantage of a higher relative biological effectiveness (RBE) and better conformality to the tumor target.
The relative biological effectiveness (RBE) of protons is highly variable and difficult to quantify. However, RBE is related to the local ionization density, which can be related to the physical measurable dose weighted linear energy transfer (LET). The aim of this study was to validate the LET calculations for proton therapy beams implemented in a commercially available treatment planning system (TPS) using microdosimetry measurements and independent LET calculations (Open-MCsquare (MCS)).
View Article and Find Full Text PDFIn this paper we investigate the emission and detection characteristics of prompt gamma (PG) rays for in vivo range verification during hadron therapy, using Geant4 simulations. Proton, He and C beams of varying energy are incident on water phantoms. The PG production yield, energy spectral characteristics and spatial correlation with the Bragg Peak (BP) have been quantified.
View Article and Find Full Text PDFThe advancement of multidisciplinary research fields dealing with ionising radiation induced biological damage - radiobiology, radiation physics, radiation protection and, in particular, medical physics - requires a clear mechanistic understanding of how cellular damage is induced by ionising radiation. Monte Carlo (MC) simulations provide a promising approach for the mechanistic simulation of radiation transport and radiation chemistry, towards the in silico simulation of early biological damage. We have recently developed a fully integrated MC simulation that calculates early single strand breaks (SSBs) and double strand breaks (DSBs) in a fractal chromatin based human cell nucleus model.
View Article and Find Full Text PDFThis work presents a simulation study evaluating relative biological effectiveness at 10% survival fraction (RBE10) of several different positron-emitting radionuclides in heavy ion treatment systems, and comparing these to the RBE10s of their non-radioactive counterparts. RBE10 is evaluated as a function of depth for three positron-emitting radioactive ion beams (C, C and O) and two stable ion beams (C and O) using the modified microdosimetric kinetic model (MKM) in a heterogeneous skull phantom subject to a rectangular 50 mm × 50 mm × 60 mm spread out Bragg peak. We demonstrate that the RBE10 of the positron-emitting radioactive beams is almost identical to the corresponding stable isotopes.
View Article and Find Full Text PDFAn experimental and simulation-based study was performed on a 12C ion minibeam radiation therapy (MBRT) field produced with a clinical broad beam and a brass multi-slit collimator (MSC). Silicon-on-insulator (SOI) microdosimeters developed at the Centre for Medical Radiation Physics (CMRP) with micron sized sensitive volumes were used to measure the microdosimetric spectra at varying positions throughout the MBRT field and the corresponding dose-mean lineal energies and RBE for 10% cell survival (RBE10) were calculated using the modified Microdosimetric Kinetic Model (MKM). An increase in the average RBE10 of ∼30% and 10% was observed in the plateau region compared to broad beam for experimental and simulation values, respectively.
View Article and Find Full Text PDFA new methodology for assessing linear energy transfer (LET) and relative biological effectiveness (RBE) in proton therapy beams using thermoluminescent detectors is presented. The method is based on the different LET response of two different lithium fluoride thermoluminescent detectors (LiF:Mg,Ti and LiF:Mg,Cu,P) for measuring charged particles. The relative efficiency of the two detector types was predicted using the recently developed Microdosimetric d(z) Model in combination with the Monte Carlo code PHITS.
View Article and Find Full Text PDFBackground: The aim of this study was to measure the microdosimetric distributions of a carbon pencil beam scanning (PBS) and passive scattering system as well as to evaluate the relative biological effectiveness (RBE) of different ions, namely C, N, and O, using a silicon-on-insulator (SOI) microdosimeter with well-defined 3D-sensitive volumes (SV). Geant4 simulations were performed with the same experimental setup and results were compared to the experimental results for benchmarking.
Method: Two different silicon microdosimeters with rectangular parallelepiped and cylindrical shaped SVs, both 10 μm in thickness were used in this study.
Purpose: This work aims to characterize a proton pencil beam scanning (PBS) and passive double scattering (DS) systems as well as to measure parameters relevant to the relative biological effectiveness (RBE) of the beam using a silicon on insulator (SOI) microdosimeter with well-defined 3D sensitive volumes (SV). The dose equivalent downstream and laterally outside of a clinical PBS treatment field was assessed and compared to that of a DS beam.
Methods: A novel silicon microdosimeter with well-defined 3D SVs was used in this study.
Silicon microdosimetry is a promising technology for heavy ion therapy (HIT) quality assurance, because of its sub-mm spatial resolution and capability to determine radiation effects at a cellular level in a mixed radiation field. A drawback of silicon is not being tissue-equivalent, thus the need to convert the detector response obtained in silicon to tissue. This paper presents a method for converting silicon microdosimetric spectra to tissue for a therapeutic C beam, based on Monte Carlo simulations.
View Article and Find Full Text PDFIn this paper we report a Geant4 simulation study to investigate the characteristic prompt gamma (PG) emission in a water phantom for real-time monitoring of the Bragg peak (BP) during proton beam irradiation. The PG production, emission spatial correlation with the BP, and position preference for detection with respect to the BP have been quantified in different PG energy windows as a function of proton pencil-beam energy from 100 to 200MeV. The PG response to small BP shifts was evaluated using a 2cm-thick slab with different human body materials embedded in a water phantom.
View Article and Find Full Text PDFIn this work, we used the Monte Carlo-based Geant4 simulation toolkit to calculate the ambient dose equivalents due to the secondary neutron field produced in a new projected proton therapy facility. In particular the facility geometry was modeled in Geant4 based on the CAD design. Proton beams were originated with an energy of 250MeV in the gantry rooms with different angles with respect to the patient; a fixed 250MeV proton beam was also modeled.
View Article and Find Full Text PDF