Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study biases affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention.
View Article and Find Full Text PDFMost heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs.
View Article and Find Full Text PDFMachine learning methods for extracting patterns from high-dimensional data are very important in the biological sciences. However, in certain cases, real-world applications cannot confirm the reported prediction performance. One of the main reasons for this is data leakage, which can be seen as the illicit sharing of information between the training data and the test data, resulting in performance estimates that are far better than the performance observed in the intended application scenario.
View Article and Find Full Text PDFThe EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced.
View Article and Find Full Text PDFIn recent decades, the development of new drugs has become increasingly expensive and inefficient, and the molecular mechanisms of most pharmaceuticals remain poorly understood. In response, computational systems and network medicine tools have emerged to identify potential drug repurposing candidates. However, these tools often require complex installation and lack intuitive visual network mining capabilities.
View Article and Find Full Text PDFApple pomace powder is a sustainable food ingredient, but its more complex composition compared to commonly purified ingredients could curb its valorization. This study assesses how physicochemical properties, formulation and process factors influence the physical properties of the emulsion. The two main objectives were to: 1) unravel the structuring and stabilizing mechanisms of such complex systems and 2) account for interactions between various parameters instead of studying them separately.
View Article and Find Full Text PDFSummary: Diseases can be caused by molecular perturbations that induce specific changes in regulatory interactions and their coordinated expression, also referred to as network rewiring. However, the detection of complex changes in regulatory connections remains a challenging task and would benefit from the development of novel nonparametric approaches. We develop a new ensemble method called BoostDiff (boosted differential regression trees) to infer a differential network discriminating between two conditions.
View Article and Find Full Text PDFIdentifying protein-protein interactions (PPIs) is crucial for deciphering biological pathways. Numerous prediction methods have been developed as cheap alternatives to biological experiments, reporting surprisingly high accuracy estimates. We systematically investigated how much reproducible deep learning models depend on data leakage, sequence similarities and node degree information, and compared them with basic machine learning models.
View Article and Find Full Text PDFMost heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs.
View Article and Find Full Text PDFGene regulatory networks (GRNs) and gene co-expression networks (GCNs) allow genome-wide exploration of molecular regulation patterns in health and disease. The standard approach for obtaining GRNs and GCNs is to infer them from gene expression data, using computational network inference methods. However, since network inference methods are usually applied on aggregate data, distortion of the networks by demographic confounders might remain undetected, especially because gene expression patterns are known to vary between different demographic groups.
View Article and Find Full Text PDFActa Neuropathol Commun
August 2023
Focal Cortical Dysplasia (FCD) is a frequent cause of drug-resistant focal epilepsy in children and young adults. The international FCD classifications of 2011 and 2022 have identified several clinico-pathological subtypes, either occurring isolated, i.e.
View Article and Find Full Text PDF