Publications by authors named "David Bish"

Unique surface properties of aluminosilicate clay minerals arise from anisotropic distribution of surface charge across their layered structures. Yet, a molecular-level understanding of clay mineral surfaces has been hampered by the lack of analytical techniques capable of measuring surface charges at the nanoscale. This is important for understanding the reactivity, colloidal stability, and ion-exchange capacity properties of clay minerals, which constitute a major fraction of global soils.

View Article and Find Full Text PDF

Powder X-ray diffraction (PXRD) techniques are widely used to characterize the nature of stacking of submicrometer-wide nanometer-thick layers that form layered mineral nanocrystals, but application of these methods to infer the in-plane configuration of the layers is difficult. Line-profile-analysis algorithms based on the Bragg equation cannot describe the broken periodicity in the stacking direction. The Debye scattering equation is an alternative approach, but it is limited by the large-scale atomistic models required to capture the multiscale nature of the layered systems.

View Article and Find Full Text PDF

Nitrous acid (HONO) accumulates in the nocturnal boundary layer where it is an important source of daytime hydroxyl radicals. Although there is clear evidence for the involvement of heterogeneous reactions of NO2 on surfaces as a source of HONO, mechanisms remain poorly understood. We used coated-wall flow tube measurements of NO2 reactivity on environmentally relevant surfaces (Fe (hydr)oxides, clay minerals, and soil from Arizona and the Saharan Desert) and detailed mineralogical characterization of substrates to show that reduction of NO2 by Fe-bearing minerals in soil can be a more important source of HONO than the putative NO2 hydrolysis mechanism.

View Article and Find Full Text PDF

The Windjana drill sample, a sandstone of the Dillinger member (Kimberley formation, Gale Crater, Mars), was analyzed by CheMin X-ray diffraction (XRD) in the MSL Curiosity rover. From Rietveld refinements of its XRD pattern, Windjana contains the following: sanidine (21% weight, ~Or); augite (20%); magnetite (12%); pigeonite; olivine; plagioclase; amorphous and smectitic material (~25%); and percent levels of others including ilmenite, fluorapatite, and bassanite. From mass balance on the Alpha Proton X-ray Spectrometer (APXS) chemical analysis, the amorphous material is Fe rich with nearly no other cations-like ferrihydrite.

View Article and Find Full Text PDF
Article Synopsis
  • The Antarctic ice cap plays a crucial role in influencing global ocean circulation and climate, but evidence of its glacial history is limited.
  • New research focuses on sulfates found in glaciogenic deposits from the Lewis Cliff Ice Tongue, revealing distinct isotope signatures that provide insights into past environmental conditions.
  • These findings suggest that ice-free cold deserts may have existed in Antarctica since the Miocene, indicating a fluctuating ice sheet size while maintaining a hydrological cycle similar to today's.
View Article and Find Full Text PDF

The Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to ~20 wt% clay minerals. A trioctahedral smectite, likely a ferrian saponite, is the only clay mineral phase detected in these samples.

View Article and Find Full Text PDF

Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity).

View Article and Find Full Text PDF

The Mars Science Laboratory landed in Gale crater on Mars in August 2012, and the Curiosity rover then began field studies on its drive toward Mount Sharp, a central peak made of ancient sediments. CheMin is one of ten instruments on or inside the rover, all designed to provide detailed information on the rocks, soils and atmosphere in this region. CheMin is a miniaturized X-ray diffraction/X-ray fluorescence (XRD/XRF) instrument that uses transmission geometry with an energy-discriminating CCD detector.

View Article and Find Full Text PDF

Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

View Article and Find Full Text PDF

The Mars Science Laboratory (MSL) has an instrument package capable of making measurements of past and present environmental conditions. The data generated may tell us if Mars is, or ever was, able to support life. However, the knowledge of Mars' past history and the geological processes most likely to preserve a record of that history remain sparse and, in some instances, ambiguous.

View Article and Find Full Text PDF

X-ray powder diffraction (XRD) data were used to solve the crystal structures of phases in the magnesium perchlorate hydrate system, Mg(ClO(4))(2)·nH(2)O (n = 4, 2). A heating stage and humidity generator interfaced to an environmental cell enabled in-situ XRD analyses of dehydration reactions under controlled temperatures and partial pressures of H(2)O (P(H(2)O)). The crystal structures were determined using an ab initio charge-flipping method and were refined using fundamental-parameter Rietveld methods.

View Article and Find Full Text PDF

Minerals and their occurrences can tell us about the chemistry, pressure, and temperatures of past environments on Mars and thus allow inferences about the potential for habitability. Thanks to recent space exploration, a new vision is emerging wherein Mars hosted environmental conditions of potential astrobiological relevance. This epoch is identified by the presence of phyllosilicate-bearing deposits, which are generally contained in very ancient basement rocks.

View Article and Find Full Text PDF

This article describes a (39)K nuclear magnetic resonance (NMR) spectroscopic study of K+ displacement at the muscovite/water interface as a function of aqueous phase pH. (39)K NMR spectra and T 2 relaxation data for nanocrystalline muscovite wet with a solid/solution weight ratio of 1 at pH 1, 3, and 5.5 show substantial liquid-like K+ only at pH 1.

View Article and Find Full Text PDF

Recent reports of approximately 30 wt% of sulphate within saline sediments on Mars--probably occurring in hydrated form--suggest a role for sulphates in accounting for equatorial H2O observed in a global survey by the Odyssey spacecraft. Among salt hydrates likely to be present, those of the MgSO4*nH2O series have many hydration states. Here we report the exposure of several of these phases to varied temperature, pressure and humidity to constrain their possible H2O contents under martian surface conditions.

View Article and Find Full Text PDF

The high-level radioactive, Al-rich, concentrated alkaline and saline waste fluids stored in underground tanks have accidentally leaked into the vadose zone at the Hanford Site in Washington State. In addition to dissolution, precipitation is likely to occur when these waste fluids contact the sediments. The objective of this study was to investigate the solid phase transformations caused by dissolution and precipitation in the sediments treated with solutions similar to the waste fluids.

View Article and Find Full Text PDF

Water-vapor adsorption on poorly crystalline boehmite (PCB) was studied using a gravimetric FTIR apparatus that measured FTIR spectra and water adsorption isotherms simultaneously. The intensity of the delta(HOH) band of adsorbed water changed linearly with water content and this linear relationship was used to determine the dry mass of the sample. Adsorption and desorption isotherms of PCB showed a Type IV isotherm.

View Article and Find Full Text PDF