Fabry-Perot interferometers (FPIs), comprising foundry-compatible dielectric thin films on sapphire wafer substrates, were investigated for possible use in chemical sensing. Specifically, structures comprising two vertically stacked distributed Bragg reflectors (DBRs), with the lower DBR between a sapphire substrate and a silicon-oxide (SiO) resonator layer and the other DBR on top of this resonator layer, were investigated for operation in the near-ultraviolet (near-UV) range. The DBRs are composed of a stack of nitride-rich silicon-nitride (SiN) layers for the higher index and SiO layers for the lower index.
View Article and Find Full Text PDFEnsuring optical transparency over a wide spectral range of a window with a view into the tailpipe of the combustion engine, while it is exposed to the harsh environment of soot-containing exhaust gas, is an essential pre-requisite for introducing optical techniques for long-term monitoring of automotive emissions. Therefore, a regenerable window composed of an optically transparent polysilicon-carbide membrane with a diameter ranging from 100 µm up to 2000 µm has been fabricated in microelectromechanical systems (MEMS) technology. In the first operating mode, window transparency is periodically restored by pulsed heating of the membrane using an integrated resistor for heating to temperatures that result in oxidation of deposited soot (600-700 °C).
View Article and Find Full Text PDFBuilding molecular-design insights for controlling both the intrachain and the interchain properties of conjugated polymers (CPs) is essential to determine their characteristics and to optimize their performance in applications. However, most CP designs have focused on the conjugated main chain to control the intrachain properties, while the design of side chains is usually used to render CPs soluble, even though the side chains critically affect the interchain packing. Here, we present a straightforward and effective design strategy for modifying the optical and electrochemical properties of diketopyrrolopyrrole-based CPs by controlling both the intrachain and interchain properties in a single system.
View Article and Find Full Text PDFDiketopyrrolopyrrole (DPP)-based conjugated polymer PDTDPPQT was synthesized and was used to perform epitaxial polymer crystal growth on removable 1,3,5-trichlorobenzene crystallite templates. A thin-film transistor (TFT) was successfully fabricated in well-grown large spherulites of PDTDPPQT. The charge carrier mobility along the radial direction of the spherulites was measured to be 5.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2015
An optical ozone sensor was developed based on the finding that a purely organic phosphor linearly loses its phosphorescence emission intensity in the presence of varying concentration of ozone gas and ozonated water. Compared to conventional conductance-based inorganic sensors, our novel sensory film has many advantages such as easy fabrication, low-cost, and portability. NMR data confirmed that phosphorescence drop is attributed to oxidation of the core triplet generating aldehyde group of the phosphor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2014
Electrode buffer layers in polymer-based photovoltaic devices enable highly efficient devices. In the absence of buffer layers, we show that diode rectification is lost in ITO/P3HT:PCBM/Ag (ITO = indium tin oxide; P3HT = poly(3-hexylthiophene); PCBM = phenyl C61-butyric acid methyl ester) devices due to nonselective charge injection through the percolated phase pathways of a bulk heterojunction active layer. Charge-selective injection, and thus rectification and device function, can be regained by placing thin, polymeric buffer layers that break the direct electrode-active layer contact.
View Article and Find Full Text PDFTo investigate the structure-dependent aggregation behavior of conjugated polymers and the effect of aggregation on the device performance of conjugated polymer photovoltaic cells, new conjugated polymers (PVTT and CN-PVTT) having the same regioregularity but different intermolecular packing were prepared and characterized by means of UV-vis spectroscopy and atomic force microscopy (AFM). Photovoltaic devices were prepared with these polymers under different polymer-aggregate conditions. Polymer aggregation induced by thermal annealing increases the short circuit current but provides no advantage in the overall power conversion efficiency because of a decrease in the open circuit voltage.
View Article and Find Full Text PDF