Despite being a fundamental dimension of experience, how the human brain generates the perception of time remains unknown. Here, we provide a novel explanation for how human time perception might be accomplished, based on non-temporal perceptual classification processes. To demonstrate this proposal, we build an artificial neural system centred on a feed-forward image classification network, functionally similar to human visual processing.
View Article and Find Full Text PDFGroups of neurons firing synchronously are hypothesized to underlie many cognitive functions such as attention, associative learning, memory, and sensory selection. Recent theories suggest that transient periods of synchronization and desynchronization provide a mechanism for dynamically integrating and forming coalitions of functionally related neural areas, and that at these times conditions are optimal for information transfer. Oscillating neural populations display a great amount of spectral complexity, with several rhythms temporally coexisting in different structures and interacting with each other.
View Article and Find Full Text PDF