Breast cancer is the leading cause of cancer deaths in women worldwide. It has been observed that the incidence of breast cancer increases linearly with age after 45, which suggest a link between cancer, aging, and senescence. A growing body of evidence indicates that the immunosuppressive tumor network in breast cancer patients can lead to T-cell exhaustion and senescence.
View Article and Find Full Text PDFNeoadjuvant chemotherapy (NAT) in breast cancer (BC) has been used to reduce tumor burden prior to surgery. However, the impact on prognosis depends on the establishment of Pathological Complete Response (pCR), which is influenced by tumor-infiltrating lymphocyte levels and the activation of the antitumor immune response. Nonetheless, NAT can affect immune infiltration and the quality of the response.
View Article and Find Full Text PDFA subset of CD4 T cells, known as T follicular helper (Tfh), provides co-stimulating signals required to establish long-term humoral immunity. Recent studies have shown a reduced frequency and functionality of this population in older adults in comparison to young adults, in response to vaccination. To evaluate whether memory generation of circulating Tfh (cTfh) cells contributes to this phenomenon, the memory subpopulations of cTfh, and their activation degree, were evaluated both ex-vivo and in-vitro, in response to the model antigen tetanus toxoid (TT) after the first dose of tetanus vaccine.
View Article and Find Full Text PDFIntroduction: Animal studies and preclinical studies in cancer patients suggest that the induction of immunogenic cell death (ICD) by neoadjuvant chemotherapy with doxorubicin and cyclophosphamide (NAC-AC) recovers the functional performance of the immune system. This could favor immunotherapy schemes such as the administration of antigen-free autologous dendritic cells (DCs) in combination with NAC-AC to profit as cryptic vaccine immunogenicity of treated tumors.
Objective: To explore the safety and immunogenicity of autologous antigen-free DCs administered to breast cancer patients (BCPs) in combination with NAC-AC.
Clonal anergy and depletion of antigen-specific CD8+ T cells are characteristics of immunosuppressed patients such as cancer and post-transplant patients. This has promoted translational research on the adoptive transfer of T cells to restore the antigen-specific cellular immunity in these patients. In the present work, we compared the capability of PBMCs and two types of mature monocyte-derived DCs (moDCs) to prime and to expand ex-vivo antigen-specific CD8+ T cells using culture conditioned media supplemented with IL-7, IL-15, and IL-21.
View Article and Find Full Text PDFBackground: Vaccination of mice with tumors treated with Doxorubicin promotes a T cell immunity that relies on dendritic cell (DC) activation and is responsible for tumor control in vaccinated animals. Despite Doxorubicin in combination with Cyclophosphamide (A/C) is widely used to treat breast cancer patients, the stimulating effect of A/C on T and APC compartments and its correlation with patient's clinical response remains to be proved.
Methods: In this prospective study, we designed an in vitro system to monitor various immunological readouts in PBMCs obtained from a total of 17 breast cancer patients before, and after neoadjuvant anti-tumor therapy with A/C.
Background: Experimental evidence and clinical studies in breast cancer suggest that some anti-tumor therapy regimens generate stimulation of the immune system that accounts for tumor clinical responses, however, demonstration of the immunostimulatory power of these therapies on cancer patients continues to be a formidable challenge. Here we present experimental evidence from a breast cancer patient with complete clinical response after 7 years, associated with responsiveness of tumor specific T cells.
Methods: T cells were obtained before and after anti-tumor therapy from peripheral blood of a 63-years old woman diagnosed with ductal breast cancer (HER2/neu+++, ER-, PR-, HLA-A*02:01) treated with surgery, followed by paclitaxel, trastuzumab (suspended due to cardiac toxicity), and radiotherapy.
Malaria is transmitted by Plasmodium-infected anopheles mosquitoes. Widespread resistance of mosquitoes to insecticides and resistance of parasites to drugs highlight the urgent need for malaria vaccines. The most advanced malaria vaccines target sporozoites, the infective form of the parasite.
View Article and Find Full Text PDF