Publications by authors named "David Becedas"

Purpose: To prospectively validate, in an ICU setting, the prognostic accuracy of the sepsis prediction algorithm NAVOY® Sepsis which uses 4 h of input for routinely collected vital parameters, blood gas values, and lab values.

Materials And Methods: Patients 18 years or older admitted to the ICU at Skåne University Hospital Malmö from December 2020 to September 2021 were recruited in the study. A total of 304 patients were randomized into one of two groups: Algorithm group with active sepsis alerts, or Standard of care.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) represents a significant global health challenge, leading to increased patient distress and financial health care burdens. The development of AKI in intensive care unit (ICU) settings is linked to prolonged ICU stays, a heightened risk of long-term renal dysfunction, and elevated short- and long-term mortality rates. The current diagnostic approach for AKI is based on late indicators, such as elevated serum creatinine and decreased urine output, which can only detect AKI after renal injury has transpired.

View Article and Find Full Text PDF

Background: Despite decades of research, sepsis remains a leading cause of mortality and morbidity in intensive care units worldwide. The key to effective management and patient outcome is early detection, for which no prospectively validated machine learning prediction algorithm is currently available for clinical use in Europe.

Objective: We aimed to develop a high-performance machine learning sepsis prediction algorithm based on routinely collected intensive care unit data, designed to be implemented in European intensive care units.

View Article and Find Full Text PDF