Publications by authors named "David Bartee"

Human NAT10 acetylates the N4 position of cytidine in RNA, predominantly on rRNA and tRNA, to facilitate ribosome biogenesis and protein translation. NAT10 has been proposed as a therapeutic target in cancers as well as aging-associated pathologies such as Hutchinson-Gilford Progeria Syndrome (HGPS). The ∼120 kDa NAT10 protein uses its acetyl-CoA-dependent acetyltransferase, ATP-dependent helicase, and RNA binding domains in concert to mediate RNA-specific N4-cytidine acetylation.

View Article and Find Full Text PDF

The rising rate of antimicrobial resistance continues to threaten global public health. Further hastening antimicrobial resistance is the lack of new antibiotics against new targets. The bacterial enzyme, 1-deoxy-d-xylulose 5-phosphate synthase (DXPS), is thought to play important roles in central metabolism, including processes required for pathogen adaptation to fluctuating host environments.

View Article and Find Full Text PDF
Article Synopsis
  • The class I phosphoinositide-3-kinase (PI3K) signaling network is crucial for regulating metabolism and growth, impacting nutrient uptake and energy generation in response to hormones and growth factors.
  • Key mutations in cancer, particularly in genes like PTEN and PI3K, activate this signaling pathway, indicating its role in tumor progression.
  • The research highlights that PI3K signaling enhances the production of coenzyme A (CoA), essential for various metabolic processes, by influencing the activities of specific enzymes (PANK2 and PANK4), linking CoA availability with cellular growth demands.
View Article and Find Full Text PDF

Anabolic metabolism of carbon in mammals is mediated via the one- and two-carbon carriers S-adenosyl methionine and acetyl-coenzyme A. In contrast, anabolic metabolism of three-carbon units via propionate has not been shown to extensively occur. Mammals are primarily thought to oxidize the three-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle.

View Article and Find Full Text PDF
Article Synopsis
  • * The synthesis and analysis of ac4C in its natural eukaryotic context were successfully achieved, revealing its impact on RNA stability and mismatch identification, particularly in human rRNA.
  • * This research lays the groundwork for future studies on the role of ac4C in biological processes and its potential implications in health and disease.
View Article and Find Full Text PDF

Methods to accurately determine the location and abundance of RNA modifications are critical to understanding their functional role. In this review, we describe recent efforts in which chemical reactivity and next-generation sequencing have been integrated to detect modified nucleotides in RNA. For eleven exemplary modifications, we detail chemical, enzymatic, and metabolic labeling protocols that can be used to differentiate them from canonical nucleobases.

View Article and Find Full Text PDF

Lysine lactoylation is a recently described protein post-translational modification (PTM). However, the biochemical pathways responsible for this acylation remain unclear. Two metabolite-dependent mechanisms have been proposed: enzymatic histone lysine lactoylation derived from lactoyl-coenzyme A (lactoyl-CoA, also termed lactyl-CoA), and non-enzymatic lysine lactoylation resulting from acyl-transfer via lactoyl-glutathione.

View Article and Find Full Text PDF

To fight the growing threat of antibiotic resistance, new antibiotics are required that target essential bacterial processes other than protein, DNA/RNA, and cell wall synthesis, which constitute the majority of currently used antibiotics. 1-Deoxy-d-xylulose-5-phosphate (DXP) synthase is a vital enzyme in bacterial central metabolism, feeding into the de novo synthesis of thiamine diphosphate, pyridoxal phosphate, and essential isoprenoid precursors isopentenyl diphosphate and dimethylallyl diphosphate. While potent and selective inhibitors of DXP synthase in vitro activity have been discovered, their antibacterial activity is modest.

View Article and Find Full Text PDF

Antibiotics are the cornerstone of modern healthcare. The 20th century discovery of sulfonamides and β-lactam antibiotics altered human society immensely. Simple bacterial infections were no longer a leading cause of morbidity and mortality, and antibiotic prophylaxis greatly reduced the risk of infection from surgery.

View Article and Find Full Text PDF

The bacterial metabolite 1-deoxy-d-xyulose 5-phosphate (DXP) is essential in bacterial central metabolism feeding into isoprenoid, thiamin diphosphate (ThDP), and pyridoxal phosphate de novo biosynthesis. Halting its production through the inhibition of DXP synthase is an attractive strategy for the development of novel antibiotics. Recent work has revealed that DXP synthase utilizes a unique random sequential mechanism that requires formation of a ternary complex among pyruvate-derived C2α-lactylthiamin diphosphate (LThDP), d-glyceraldehyde 3-phosphate (d-GAP), and enzyme, setting it apart from all other known ThDP-dependent enzymes.

View Article and Find Full Text PDF

Targeting essential bacterial processes beyond cell wall, protein, nucleotide, and folate syntheses holds promise to reveal new antimicrobial agents and expand the potential drugs available for combination therapies. The synthesis of isoprenoid precursors, isopentenyl diphosphate (IDP) and dimethylallyl diphosphate (DMADP), is vital for all organisms; however, humans use the mevalonate pathway for production of IDP/DMADP while many pathogens, including Plasmodium falciparum and Mycobacterium tuberculosis, use the orthogonal methylerythritol phosphate (MEP) pathway. Toward developing novel antimicrobial agents, we have designed and synthesized a series of phosphonyl analogues of MEP and evaluated their abilities to interact with IspD, both as inhibitors of the natural reaction and as antimetabolite alternative substrates that could be processed enzymatically to form stable phosphonyl analogues as potential inhibitors of downstream MEP pathway intermediates.

View Article and Find Full Text PDF

The in vivo microenvironment of bacterial pathogens is often characterized by nutrient limitation. Consequently, conventional rich in vitro culture conditions used widely to evaluate antibacterial agents are often poorly predictive of in vivo activity, especially for agents targeting metabolic pathways. In one such pathway, the methylerythritol phosphate (MEP) pathway, which is essential for production of isoprenoids in bacterial pathogens, relatively little is known about the influence of growth environment on antibacterial properties of inhibitors targeting enzymes in this pathway.

View Article and Find Full Text PDF

Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation).

View Article and Find Full Text PDF

1-Deoxy-d-xylulose 5-phosphate (DXP) synthase catalyzes the thiamin diphosphate (ThDP)-dependent formation of DXP from pyruvate and d-glyceraldehyde 3-phosphate. DXP is at a metabolic branch point in bacteria, feeding into the methylerythritol phosphate pathway to indispensable isoprenoids and acting as a precursor for biosynthesis of essential cofactors in central metabolism, pyridoxal phosphate and ThDP, the latter of which is also required for DXP synthase catalysis. DXP synthase follows a unique random sequential mechanism and possesses an unusually large active site.

View Article and Find Full Text PDF

1-Deoxy-D-xylulose 5-phosphate (DXP) synthase is the first enzyme in the methylerythritol phosphate pathway to essential isoprenoids in pathogenic bacteria and apicomplexan parasites. In bacterial pathogens, DXP lies at a metabolic branch point, serving also as a precursor in the biosynthesis of vitamins B1 and B6, which are critical for central metabolism. In an effort to identify new bisubstrate analogue inhibitors that exploit the large active site and distinct mechanism of DXP synthase, a library of aryl mixed oximes was prepared and evaluated.

View Article and Find Full Text PDF

Lipoate scavenging from the human host is essential for malaria parasite survival. Scavenged lipoate is covalently attached to three parasite proteins: the H-protein and the E2 subunits of branched chain amino acid dehydrogenase (BCDH) and α-ketoglutarate dehydrogenase (KDH). We show mitochondrial localization for the E2 subunits of BCDH and KDH, similar to previously localized H-protein, demonstrating that all three lipoylated proteins reside in the parasite mitochondrion.

View Article and Find Full Text PDF

Atg8 is a ubiquitin-like autophagy protein in eukaryotes that is covalently attached (lipidated) to the elongating autophagosomal membrane. Autophagy is increasingly appreciated as a target in diverse diseases from cancer to eukaryotic parasitic infections. Some of the autophagy machinery is conserved in the malaria parasite, Plasmodium.

View Article and Find Full Text PDF