L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth.
View Article and Find Full Text PDFCassava's storage roots represent one of the most important sources of nutritional carbohydrates worldwide. Particularly, smallholder farmers in sub-Saharan Africa depend on this crop plant, where resilient and yield-improved varieties are of vital importance to support steadily increasing populations. Aided by a growing understanding of the plant's metabolism and physiology, targeted improvement concepts already led to visible gains in recent years.
View Article and Find Full Text PDFDeschampsia antarctica is one of the only two native vascular plants in Antarctica, mostly located in the ice-free areas of the Peninsula's coast and adjacent islands. This region is characterized by a short growing season, frequent extreme climatic events, and soils with reduced nutrient availability. However, it is unknown whether its photosynthetic and stress tolerance mechanisms are affected by the availability of nutrients to deal with this particular environment.
View Article and Find Full Text PDFAltering plant water use efficiency (WUE) is a promising approach for achieving sustainable crop production in changing climate scenarios. Here, we show that WUE can be tuned by alleles of a single gene discovered in elite maize (Zea mays) breeding material. Genetic dissection of a genomic region affecting WUE led to the identification of the gene ZmAbh4 as causative for the effect.
View Article and Find Full Text PDFAs sessile organisms, plants must adapt their physiology and developmental processes to cope with challenging environmental circumstances, such as the ongoing elevation in atmospheric carbon dioxide (CO ) levels. Nicotinamide adenine dinucleotide (NAD ) is a cornerstone of plant metabolism and plays an essential role in redox homeostasis. Given that plants impaired in NAD metabolism and transport often display growth defects, low seed production and disturbed stomatal development/movement, we hypothesized that subcellular NAD distribution could be a candidate for plants to exploit the effects of CO fertilization.
View Article and Find Full Text PDFAuxin is an important hormone playing crucial roles during fruit growth and ripening; however, the metabolic impact of changes in auxin signalling during tomato (Solanum lycopersicum L.) ripening remains unclear. Here, we investigated the significance of changes in auxin signalling during different stages of fruit development by analysing changes in tomato fruit quality and primary metabolism using mutants with either lower or higher auxin sensitivity [diageotropica (dgt) and entire mutants, respectively].
View Article and Find Full Text PDFC4 photosynthesis concentrates CO2 around Rubisco in the bundle sheath, favouring carboxylation over oxygenation and decreasing photorespiration. This complex trait evolved independently in >60 angiosperm lineages. Its evolution can be investigated in genera such as Flaveria (Asteraceae) that contain species representing intermediate stages between C3 and C4 photosynthesis.
View Article and Find Full Text PDFProtein phosphorylation is a well-established post-translational mechanism that regulates protein functions and metabolic pathways. It is known that several plant mitochondrial proteins are phosphorylated in a reversible manner. However, the identities of the protein kinases/phosphatases involved in this mechanism and their roles in the regulation of the tricarboxylic acid (TCA) cycle remain unclear.
View Article and Find Full Text PDFIn Arabidopsis thaliana, two genes encode the E2 subunit of the 2-oxoglutarate dehydrogenase (2-OGDH), a multimeric complex composed of three subunits. To functionally characterize the isoforms of E2 subunit, we isolated Arabidopsis mutant lines for each gene encoding the E2 subunit and performed a detailed molecular and physiological characterization of the plants under controlled growth conditions. The functional lack of expression of E2 subunit isoforms of 2-OGDH increased plant growth, reduced dark respiration and altered carbohydrate metabolism without changes in the photosynthetic rate.
View Article and Find Full Text PDFDespite the fundamental importance of nicotinamide adenine dinucleotide (NAD+) for metabolism, the physiological roles of NAD+ carriers in plants remain unclear. We previously characterized the Arabidopsis thaliana gene (At1g25380), named AtNDT2, encoding a protein located in the mitochondrial inner membrane, which imports NAD+ from the cytosol using ADP and AMP as counter-exchange substrates for NAD+. Here, we further investigated the physiological roles of NDT2, by isolating a T-DNA insertion line, generating an antisense line and characterizing these genotypes in detail.
View Article and Find Full Text PDFIsoforms of 2-OGDH E1 subunit are not functionally redundant in plant growth and development of A. thaliana. The tricarboxylic acid cycle enzyme 2-oxoglutarate dehydrogenase (2-OGDH) converts 2-oxoglutarate (2-OG) to succinyl-CoA concomitant with the reduction of NAD.
View Article and Find Full Text PDFGuava is a typically tropical fruit highly perishable with a short shelf-life due to intense metabolic activity after harvested. In attempt to minimize the problems related to the postharvest, we evaluated the physiochemical characteristics and antioxidant system in guava fruits under chitosan coating at concentrations of 1%, 2%, and 3% stored at 25°C during 96h. The chitosan suppressed the respiratory rate, fresh weight loss, firmness and skin color with delay in the degradation of chlorophyll.
View Article and Find Full Text PDF