Publications by authors named "David Baliu-Rodriguez"

Harmful algal blooms are increasing globally and pose serious health concerns releasing cyanotoxins. Microcystin-LR (MC-LR), one of the most frequently produced cyanotoxins, has recently been detected in aerosols generated by the normal motions of affected bodies of water. MC-LR aerosol exposure has been linked to a pro-inflammatory influence on the airways of mice; however, little is understood about the underlying mechanism or the potential consequences.

View Article and Find Full Text PDF
Article Synopsis
  • Nutrient pollution from nitrogen inputs causes harmful blooms of the cyanobacterium Microcystis, which poses risks to public health and ecosystems.
  • This study explored how different forms of organic nitrogen affect Microcystis growth and toxin production, revealing that the type of nitrogen available significantly influences the associated microbial community and Microcystis' nutrient uptake.
  • Findings indicate that while Microcystis can directly absorb amino acids, the presence of certain bacteria can either compete with or enhance its nitrogen uptake, potentially supporting harmful blooms under low inorganic nitrogen conditions.
View Article and Find Full Text PDF

Accelerator mass spectrometry (AMS) is the method of choice for quantitation of low amounts of C-labeled biomolecules. Despite exquisite sensitivity, an important limitation of AMS is its inability to provide structural information about the analyte. This limitation is not critical when the labeled compounds are well-characterized prior to AMS analysis.

View Article and Find Full Text PDF

We have previously shown in a murine model of Non-alcoholic Fatty Liver Disease (NAFLD) that chronic, low-dose exposure to the Harmful Algal Bloom cyanotoxin microcystin-LR (MC-LR), resulted in significant hepatotoxicity including micro-vesicular lipid accumulation, impaired toxin metabolism as well as dysregulation of the key signaling pathways involved in inflammation, immune response and oxidative stress. On this background we hypothesized that augmentation of hepatic drug metabolism pathways with targeted antioxidant therapies would improve MC-LR metabolism and reduce hepatic injury in NAFLD mice exposed to MC-LR. We chose N-acetylcysteine (NAC, 40 mM), a known antioxidant that augments the glutathione detoxification pathway and a novel peptide (pNaKtide, 25 mg/kg) which is targeted to interrupting a specific Src-kinase mediated pro-oxidant amplification mechanism.

View Article and Find Full Text PDF

Cyanotoxins called microcystins (MCs) are highly toxic and can be present in drinking water sources. Determining the structure of MCs is paramount because of its effect on toxicity. Though over 300 MC congeners have been discovered, many remain unidentified.

View Article and Find Full Text PDF

A method was developed to extract and quantify microcystins (MCs) from mouse liver with limits of quantification (LOQs) lower than previously reported. MCs were extracted from 40-mg liver samples using 85:15 (v:v) CHCN:HO containing 200 mM ZnSO and 1% formic acid. Solid-phase extraction with a C18 cartridge was used for sample cleanup.

View Article and Find Full Text PDF
Article Synopsis
  • Microcystins, particularly Microcystin-LR (MC-LR), are toxic compounds that pose health risks, especially for people with liver issues.
  • A study tested whether doses of MC-LR previously deemed safe for healthy mice could worsen liver damage in mice with Non-alcoholic Fatty Liver Disease (NAFLD).
  • Results showed that even low doses of MC-LR increased liver damage markers, caused early death in some mice, and triggered changes in genes and proteins linked to liver stress and inflammation.
View Article and Find Full Text PDF

Microcystins (MCs) appear during harmful algal blooms (HABs) in water sources worldwide, and represent a threat for humans and animals ingesting or inhaling MCs from the environment. Herein, treated rice husk (RH) was tested as a recyclable sorbent for removal of six MCs (MC-RR, MC-LR, MC-YR, MC-LA, MC-LF, and MC-LW) from water. RH was refluxed with hydrochloric acid and heated to 250 °C to produce the sorbent material.

View Article and Find Full Text PDF

The protocols for solid-phase extraction (SPE) of six microcystins (MCs; MC-LR, MC-RR, MC-LA, MC-LF, MC-LW, and MC-YR) from mouse urine, mouse plasma, and human serum are reported. The quantification of those MCs in biofluids was achieved using HPLC-orbitrap-MS in selected-ion monitoring (SIM) mode, and MCs in urine samples were also quantified by ultra-HPLC-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Under optimal conditions, the extraction recoveries of MCs from samples spiked at two different concentrations (1 μg/L and 10 μg/L) ranged from 90.

View Article and Find Full Text PDF