Perfluorooctanoic acid (PFOA) is an artificial chemical of global concern due to its high environmental persistence and potential human health risk. Electrochemical methods are promising technologies for water treatment because they are efficient, cheap, and scalable. The electrochemical reduction of PFOA is one of the current methodologies.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2023
Background: The average age of childbearing has increased over the years contributing to infertility, miscarriages, and chromosomal abnormalities largely invoked by an age-related decline in oocyte quality. In this study, we investigate the role of nitric oxide (NO) insufficiency and protein nitration in oocyte chronological aging.
Methods: Mouse oocytes were retrieved from young breeders (YB, 8-14 weeks [w]), retired breeders (RB, 48-52w) and old animals (OA, 80-84w) at 13.
Objective: To study the implications of decreased zinc and tetrahydrobiopterin (HB) associated with chronological aging on oocyte quality using a mouse model. HB and zinc are essential cofactors for nitric oxide synthase (NOS), because they aid in electron transfer and dimeric stability, and their bioavailability is crucial in regulating NOS coupling. We have previously shown that sufficient levels of nitric oxide (NO) are essential for maintaining oocyte quality and activation, and NO levels decrease in the oocyte as a function of age.
View Article and Find Full Text PDFInducible nitric oxide synthase (iNOS) is a zinc-containing hemoprotein composed of two identical subunits, each containing a reductase and an oxygenase domain. The reductase domain contains binding sites for NADPH, FAD, FMN, and tightly bound calmodulin and the oxygenase domain contains binding sites for heme, tetrahydrobiopterin (HB), and l-arginine. The enzyme converts l-arginine into nitric oxide (NO) and citrulline in the presence of O.
View Article and Find Full Text PDFRecent studies have shown a correlation between COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the distinct, exaggerated immune response titled "cytokine storm". This immune response leads to excessive production and accumulation of reactive oxygen species (ROS) that cause clinical signs characteristic of COVID-19 such as decreased oxygen saturation, alteration of hemoglobin properties, decreased nitric oxide (NO) bioavailability, vasoconstriction, elevated cytokines, cardiac and/or renal injury, enhanced D-dimer, leukocytosis, and an increased neutrophil to lymphocyte ratio. Particularly, neutrophil myeloperoxidase (MPO) is thought to be especially abundant and, as a result, contributes substantially to oxidative stress and the pathophysiology of COVID-19.
View Article and Find Full Text PDFCOVID-19 (coronavirus disease 2019) is the current world health crisis, producing extensive morbidity and mortality across all age groups. Given the established roles of zinc in combating oxidative damage and viral infections, zinc is being trialed as a treatment modality against COVID-19. Zinc also has confirmed roles in both male and female reproduction.
View Article and Find Full Text PDFMulti-system involvement and rapid clinical deterioration are hallmarks of coronavirus disease 2019 (COVID-19) related mortality. The unique clinical phenomena in severe COVID-19 can be perplexing, and they include disproportionately severe hypoxemia relative to lung alveolar-parenchymal pathology and rapid clinical deterioration, with poor response to O supplementation, despite preserved lung mechanics. Factors such as microvascular injury, thromboembolism, pulmonary hypertension, and alteration in hemoglobin structure and function could play important roles.
View Article and Find Full Text PDFGlyphosate is the most popular herbicide used in modern agriculture, and its use has been increasing substantially since its introduction. Accordingly, glyphosate exposure from food and water, the environment, and accidental and occupational venues has also increased. Recent studies have demonstrated a relationship between glyphosate exposure and a number of disorders such as cancer, immune and metabolic disorders, endocrine disruption, imbalance of intestinal flora, cardiovascular disease, and infertility; these results have given glyphosate a considerable amount of media and scientific attention.
View Article and Find Full Text PDFCaspase-3 is involved in apoptosis. Here, we examine whether hypochlorous acid (HOCl), a final product of myeloperoxidase (MPO), is a modulator of caspase-3 at relatively low concentrations and also its application on metaphase II mouse oocytes. We utilised caspase-3 activity assay, TUNEL assay, the CellEvent caspase 3/7 fluorescent assay, and the MPO/hydrogen peroxide (HO) system on mouse oocytes with and without cumulus cells to examine whether low concentrations of HOCl mediate apoptosis by inhibition of caspase-3.
View Article and Find Full Text PDFHere, we show that mesna (sodium-2-mercaptoethane sulfonate), primarily used to prevent nephrotoxicity and urinary tract toxicity caused by chemotherapeutic agents such as cyclophosphamide and ifosfamide, modulates the catalytic activity of lactoperoxidase (LPO) by binding tightly to the enzyme, functioning either as a one electron substrate for LPO Compounds I and II, destabilizing Compound III. Lactoperoxidase is a hemoprotein that utilizes hydrogen peroxide (HO) and thiocyanate (SCN) to produce hypothiocyanous acid (HOSCN), an antimicrobial agent also thought to be associated with carcinogenesis. Our results revealed that mesna binds stably to LPO within the SCN binding site, dependent of the heme iron moiety, and its combination with LPO-Fe(III) is associated with a disturbance in the water molecule network in the heme cavity.
View Article and Find Full Text PDFCatalase (CAT) and myeloperoxiase (MPO) are heme-containing enzymes that have attracted attention for their role in the etiology of numerous respiratory disorders such as cystic fibrosis, bronchial asthma, and acute hypoxemic respiratory failure. However, information regarding the interrelationship and competition between the two enzymes, free iron accumulation, and decreased levels of non-enzymatic antioxidants at sites of inflammation is still lacking. Myeloperoxidase catalyzes the generation of hypochlorous acid (HOCl) from the reaction of hydrogen peroxide (HO) and chloride (Cl).
View Article and Find Full Text PDFNotch signaling pathway is involved in the regulation of cell fate, differentiation, proliferation, and apoptosis in development and disease. Previous studies suggest the importance of Notch1 in myofibroblast differentiation in lung alveogenesis and fibrosis. However, direct in vivo evidence of Notch1-mediated myofibroblast differentiation is lacking.
View Article and Find Full Text PDF