Aflatoxins are polyaromatic mycotoxins that contaminate a range of food crops as a result of fungal growth and contribute to serious health problems in the developing world because of their toxicity and mutagenicity. Although relatively resistant to biotic degradation, aflatoxins can be metabolized by certain species of Actinomycetales. However, the enzymatic basis for their breakdown has not been reported until now.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2008
Pyridoxine 5'-phosphate oxidases (PNPOxs) are known to catalyse the terminal step in pyridoxal 5'-phosphate biosynthesis in a flavin mononucleotide-dependent manner in humans and Escherichia coli. Recent reports of a putative PNPOx from Mycobacterium tuberculosis, Rv1155, suggest that the cofactor or catalytic mechanism may differ in Mycobacterium species. To investigate this, a putative PNPOx from M.
View Article and Find Full Text PDFSynthesis of the tyrosine derived cyanogenic glucoside dhurrin in Sorghum bicolor is catalyzed by two multifunctional, membrane bound cytochromes P450, CYP79A1 and CYP71E1, and a soluble UDPG-glucosyltransferase, UGT85B1 (Tattersall, D.B., Bak, S.
View Article and Find Full Text PDFThe in vitro substrate specificity of UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase from Sorghum bicolor (UGT85B1) was examined using a range of potential acceptor molecules, including cyanohydrins, terpenoids, phenolics, hexanol derivatives and plant hormones. Qualitative enzyme activity assays employing 20 different putative substrates were performed and 15 proved to be glucosylated using recombinant UGT85B1 isolated from Escherichia coli. K(m) and k(cat) values were determined for nine of these substrates including mandelonitrile, geraniol, nerol and beta-citronellol, 2-hydroxy-3-methoxybenzyl alcohol, 1-hexanol, cis-3-hexen-1-ol, 3-methyl-3-buten-1-ol and 3-methyl-2-buten-1-ol.
View Article and Find Full Text PDF