Publications by authors named "David B Stephenson"

Since the 1970s, scientists have developed statistical methods intended to formalize detection of changes in global climate and to attribute such changes to relevant causal factors, natural and anthropogenic. Detection and attribution (D&A) of climate change trends is commonly performed using a variant of Hasselmann's "optimal fingerprinting" method, which involves a linear regression of historical climate observations on corresponding output from numerical climate models. However, it has long been known in the field of time series analysis that regressions of "non-stationary" or "trending" variables are, in general, statistically inconsistent and often spurious.

View Article and Find Full Text PDF

There is a pressing need for simple and reliable risk transfer mechanisms that can pay out quickly after natural disasters without delays caused by loss estimation, and the need for long historical claims records. One such approach, known as parametric insurance, pays out when a key hazard variable exceeds a predetermined threshold. However, this approach to catastrophe risk, based on making deterministic binary predictions of loss occurrence, is susceptible to basis risk (mismatch between payouts and realized losses).

View Article and Find Full Text PDF

We develop a statistical framework for simulating natural hazard events that combines extreme value theory and geostatistics. Robust generalized additive model forms represent generalized Pareto marginal distribution parameters while a Student's -process captures spatial dependence and gives a continuous-space framework for natural hazard event simulations. Efficiency of the simulation method allows many years of data (typically over 10 000) to be obtained at relatively little computational cost.

View Article and Find Full Text PDF
Article Synopsis
  • A prototype dengue early warning system was created to forecast dengue risk three months prior to the 2014 World Cup in Brazil.
  • The evaluation showed that this forecast model outperformed a null model based on seasonal averages, achieving a hit rate of 57% compared to 33%.
  • This early warning framework could be valuable for public health services to manage dengue epidemics both before large events and during the peak transmission season.
View Article and Find Full Text PDF

Background: With more than a million spectators expected to travel among 12 different cities in Brazil during the football World Cup, June 12-July 13, 2014, the risk of the mosquito-transmitted disease dengue fever is a concern. We addressed the potential for a dengue epidemic during the tournament, using a probabilistic forecast of dengue risk for the 553 microregions of Brazil, with risk level warnings for the 12 cities where matches will be played.

Methods: We obtained real-time seasonal climate forecasts from several international sources (European Centre for Medium-Range Weather Forecasts [ECMWF], Met Office, Meteo-France and Centro de Previsão de Tempo e Estudos Climáticos [CPTEC]) and the observed dengue epidemiological situation in Brazil at the forecast issue date as provided by the Ministry of Health.

View Article and Find Full Text PDF

Previous studies demonstrate statistically significant associations between disease and climate variations, highlighting the potential for developing climate-based epidemic early warning systems. However, limitations include failure to allow for non-climatic confounding factors, limited geographical/temporal resolution, or lack of evaluation of predictive validity. Here, we consider such issues for dengue in Southeast Brazil using a spatio-temporal generalised linear mixed model with parameters estimated in a Bayesian framework, allowing posterior predictive distributions to be derived in time and space.

View Article and Find Full Text PDF

We develop a graphical interpretation of ternary probabilistic forecasts in which forecasts and observations are regarded as points inside a triangle. Within the triangle, we define a continuous colour palette in which hue and colour saturation are defined with reference to the observed climatology. In contrast to current methods, forecast maps created with this colour scheme convey all of the information present in each ternary forecast.

View Article and Find Full Text PDF

Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence.

View Article and Find Full Text PDF

We use an empirical statistical model to demonstrate significant skill in making extended-range forecasts of the monthly-mean Arctic Oscillation (AO). Forecast skill derives from persistent circulation anomalies in the lowermost stratosphere and is greatest during boreal winter. A comparison to the Southern Hemisphere provides evidence that both the time scale and predictability of the AO depend on the presence of persistent circulation anomalies just above the tropopause.

View Article and Find Full Text PDF