Publications by authors named "David B Reichling"

Reducing meat consumption may improve human health, curb environmental damage, and limit the large-scale suffering of animals raised in factory farms. Most attention to reducing consumption has focused on restructuring environments where foods are chosen or on making health or environmental appeals. However, psychological theory suggests that interventions appealing to animal welfare concerns might operate on distinct, potent pathways.

View Article and Find Full Text PDF

Background: Reducing meat consumption may improve human health, curb environmental damage and greenhouse gas emissions, and limit the large-scale suffering of animals raised in factory farms. Previous work has begun to develop interventions to reduce individual meat consumption, often by appealing directly to individual health motivations. However, research on nutritional behavior change suggests that interventions additionally linking behavior to ethical values, identity formation, and existing social movements may be particularly effective and longer-lasting.

View Article and Find Full Text PDF

Mouse-tracking is a sophisticated tool for measuring rapid, dynamic cognitive processes in real time, particularly in experiments investigating competition between perceptual or cognitive categories. We provide user-friendly, open-source software ( https://osf.io/st2ef/ ) for designing and analyzing such experiments online using the Qualtrics survey platform.

View Article and Find Full Text PDF

Android robots are entering human social life. However, human-robot interactions may be complicated by a hypothetical Uncanny Valley (UV) in which imperfect human-likeness provokes dislike. Previous investigations using unnaturally blended images reported inconsistent UV effects.

View Article and Find Full Text PDF

Acute insults produce hyperalgesic priming, a neuroplastic change in nociceptors that markedly prolongs inflammatory mediator-induced hyperalgesia. After an acute initiating insult, there is a 72 h delay to the onset of priming, for which the underlying mechanism is unknown. We hypothesized that the delay is due to the time required for a signal to travel from the peripheral terminal to the cell body followed by a return signal to the peripheral terminal.

View Article and Find Full Text PDF

The molecular/genetic era has seen the discovery of a staggering number of molecules implicated in pain mechanisms [18,35,61,69,96,133,150,202,224]. This has stimulated pharmaceutical and biotechnology companies to invest billions of dollars to develop drugs that enhance or inhibit the function of many these molecules. Unfortunately this effort has provided a remarkably small return on this investment.

View Article and Find Full Text PDF

While oxidative stress has been implicated in small-fiber painful peripheral neuropathies, antioxidants are only partially effective to treat patients. We have tested the hypothesis that Drp1 (dynamin-related protein 1), a GTPase that catalyzes the process of mitochondrial fission, which is a mechanism central for the effect and production of reactive oxygen species (ROS), plays a central role in these neuropathic pain syndromes. Intrathecal administration of oligodeoxynucleotide antisense against Drp1 produced a decrease in its expression in peripheral nerve and markedly attenuated neuropathic mechanical hyperalgesia caused by HIV/AIDS antiretroviral [ddC (2',3'-dideoxycytidine)] and anticancer (oxaliplatin) chemotherapy in male Sprague Dawley rats.

View Article and Find Full Text PDF

Chronic peripheral neuropathic pain is the result of abnormal activity in sensory nerves. It is well recognized that this sensory nerve dysfunction can be caused by traumatic, toxic, or metabolic insult to the nerve. In addition, there is growing recognition that neuropathic pain is a frequent manifestation of neurodegenerative diseases.

View Article and Find Full Text PDF

Clinical pain conditions may remain responsive to opiate analgesics for extended periods, but such persistent acute pain can undergo a transition to an opiate-resistant chronic pain state that becomes a much more serious clinical problem. To test the hypothesis that cellular mechanisms of chronic pain in the primary afferent also contribute to the development of opiate resistance, we used a recently developed model of the transition of from acute to chronic pain, hyperalgesic priming. Repeated intradermal administration of the potent and highly selective mu-opioid agonist, [d-Ala(2),N-MePhe(4),gly-ol]-enkephalin (DAMGO), to produce tolerance for its inhibition of prostaglandin E(2) hyperalgesia, simultaneously produced hyperalgesic priming.

View Article and Find Full Text PDF

Background: State and national policymakers are actively debating the merits of legally mandating the human papillomavirus (HPV) vaccine.

Methods: This was a cross-sectional pilot study designed to identify factors associated with HPV vaccination in 170 high school girls and the decision making by girls about vaccination.

Results: Overall, 48.

View Article and Find Full Text PDF

The transition from acute to chronic pain states might be the most important challenge in research to improve clinical treatment of debilitating pain. We describe a recently identified mechanism of neuronal plasticity in primary afferent nociceptive nerve fibers (nociceptors) by which an acute inflammatory insult or environmental stressor can trigger long-lasting hypersensitivity of nociceptors to inflammatory cytokines. This phenomenon, "hyperalgesic priming," depends on the epsilon isoform of protein kinase C (PKCepsilon) and a switch in intracellular signaling pathways that mediate cytokine-induced nociceptor hyperexcitability.

View Article and Find Full Text PDF

The neurotoxic effects of catecholamine metabolites have been implicated in neurodegenerative diseases. As some sensory neurons express tyrosine hydroxylase and monoamine oxidase (MAO), we investigated the potential contribution of catecholamine metabolites to neuropathic pain in a model of alcoholic neuropathy. The presence of catecholamines in sensory neurons is supported by capsaicin-stimulated epinephrine release, an effect enhanced in ethanol-fed rats.

View Article and Find Full Text PDF

Stress dramatically exacerbates pain in diseases such as fibromyalgia and rheumatoid arthritis, but the underlying mechanisms are unknown. We tested the hypothesis that stress causes generalized hyperalgesia by enhancing pronociceptive effects of immune mediators. Rats exposed to nonhabituating sound stress exhibited no change in mechanical nociceptive threshold, but showed a marked increase in hyperalgesia evoked by local injections of prostaglandin E(2) or epinephrine.

View Article and Find Full Text PDF

Although the transient receptor potential vanilloid 4 (TRPV4) has been implicated in the process of osmomechanical transduction, it appears to make little contribution to the normal somatosensory detection of mechanical stimuli. However, evidence suggests that it may play an important role in mechanical hyperalgesia. In the present study, we examined the common requirement for TRPV4 in mechanical hyperalgesia associated with diverse pain models and investigated whether the very close association observed between TRPV4 and mechanical hyperalgesia, regardless of etiology, reflects a close functional connection of TRPV4 with other molecules implicated in mechanical transduction.

View Article and Find Full Text PDF

Fibromyalgia syndrome (FM) is a common, often debilitating and intractable, chronic, generalized pain condition. The development of effective therapies to treat FM has been hindered by a lack of understanding of fundamental mechanisms in the etiology of FM. In view of prominent characteristics that FM shares with other generalized pain conditions, we suggest that a key mechanism in such disorders may be that of altered activity in the subdiaphragmatic vagus nerve.

View Article and Find Full Text PDF

We recently reported that hyperalgesia induced by the inflammatory mediator prostaglandin E(2) (PGE(2)) requires intact alpha1, alpha3 and beta1 integrin subunit function, whereas epinephrine-induced hyperalgesia depends on alpha5 and beta1. PGE(2)-induced hyperalgesia is mediated by protein kinase A (PKA), while epinephrine-induced hyperalgesia is mediated by a combination of PKA, protein kinase Cepsilon (PKCepsilon) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK). We hypothesized that inflammatory mediator-induced hyperalgesia involves specific interactions between different subsets of integrin subunits and particular second messenger species.

View Article and Find Full Text PDF

The development of treatments for neuropathic pain has been hindered by our limited understanding of the basic mechanisms underlying abnormalities in nociceptor hyperexcitability. We recently showed that the polymodal receptor transient receptor potential vanilloid 4 (TRPV4), a member of the transient receptor potential (TRP) family of ion channels, may play a role in inflammatory pain (Alessandri-Haber et al., 2003).

View Article and Find Full Text PDF

We hypothesized that TRPV4, a member of the transient receptor family of ion channels, functions as a sensory transducer for osmotic stimulus-induced nociception. We found that, as expected for a transducer molecule, TRPV4 protein is transported in sensory nerve distally toward the peripheral nerve endings. In vivo single-fiber recordings in rat showed that hypotonic solution activated 54% of C-fibers, an effect enhanced by the hyperalgesic inflammatory mediator prostaglandin E2.

View Article and Find Full Text PDF

The capsaicin-sensitive vanilloid receptor (VR1) was recently shown to play an important role in inflammatory pain (hyperalgesia), but the underlying mechanism is unknown. We hypothesized that pain-producing inflammatory mediators activate capsaicin receptors by inducing the production of fatty acid agonists of VR1. This study demonstrates that bradykinin, acting at B2 bradykinin receptors, excites sensory nerve endings by activating capsaicin receptors via production of 12-lipoxygenase metabolites of arachidonic acid.

View Article and Find Full Text PDF

One of the most important advances in our understanding of the pain experience was the introduction of the 'gate control' theory which stimulated analysis of activity pattern in nociceptive pathways and its modulation. Advances in cellular and molecular biology have recently begun to provide detailed information on the mechanisms of stimulus transduction within primary afferent nociceptors as well as mechanisms that modulate the transduction process. From these new insights into the sensory physiology of the nociceptive nerve ending emerges a concept of the primary afferent as the first site of pattern generation in the nociceptive pathway, in which dynamic tuning of gain in the mosaic of inputs to individual primary afferents occurs.

View Article and Find Full Text PDF