Background: Overexpression of Met tyrosine kinase receptor is associated with poor prognosis. Overexpression, and particularly MET amplification, are predictive of response to Met-specific therapy in preclinical models. Immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) tissues is currently used to select for 'high Met' expressing tumors for Met inhibitor trials.
View Article and Find Full Text PDFOne of the critical gaps in the clinical diagnostic space is the lack of quantitative proteomic methods for use on formalin-fixed, paraffin-embedded (FFPE) tissue. Herein, we describe the development of a quantitative, multiplexed, mass spectrometry-based selected reaction monitoring (SRM) assay for four therapeutically important targets: epidermal growth factor receptor, human EGF receptor (HER)-2, HER3, and insulin-like growth factor-1 receptor. These assays were developed using the Liquid Tissue-SRM technology platform, in which FFPE tumor tissues were microdissected, completely solubilized, and then subjected to multiplexed quantitation by SRM mass spectrometry.
View Article and Find Full Text PDFMethods Mol Biol
February 2014
Application of mass spectrometry to proteomic analysis of tissue is a highly desirable approach to discovery of disease biomarkers due to a direct correlation of findings to tissue/disease histology and in many respects obviating the need for model systems of disease. Both frozen and formalin-fixed, paraffin-embedded (FFPE) tissue can be interrogated; however, worldwide access to vastly larger numbers of highly characterized FFPE tissue collections derived from both human and model organisms makes this form of tissue more advantageous. Here, an approach to large-scale, global proteomic analysis of FFPE tissue is described that can be employed to discover differentially expressed proteins between different histological tissue types and thus discover novel protein biomarkers of disease.
View Article and Find Full Text PDFBackground: Analysis of key therapeutic targets such as epidermal growth factor receptor (EGFR) in clinical tissue samples is typically done by immunohistochemistry (IHC) and is only subjectively quantitative through a narrow dynamic range. The development of a standardized, highly-sensitive, linear, and quantitative assay for EGFR for use in patient tumor tissue carries high potential for identifying those patients most likely to benefit from EGFR-targeted therapies.
Methods: A mass spectrometry-based Selected Reaction Monitoring (SRM) assay for the EGFR protein (EGFR-SRM) was developed utilizing the Liquid Tissue®-SRM technology platform.
The heterogeneity of breast cancer requires the discovery of more incisive molecular tools that better define disease progression and prognosis. Proteomic analysis of homogeneous tumor cell populations derived by laser microdissection from formalin-fixed, paraffin-embedded (FFPE) tissues has proven to be a robust strategy for conducting retrospective cancer biomarker investigations. We describe an MS-based analysis of laser microdissected cancerous epithelial cells derived from twenty-five breast cancer patients at defined clinical disease stages with the goal of identifying protein abundance characteristics indicative of disease progression and recurrence.
View Article and Find Full Text PDFBackground: Pancreatic cancer is an almost uniformly fatal disease, and early detection is a critical determinant of improved survival. A variety of noninvasive precursor lesions of pancreatic adenocarcinoma have been identified, which provide a unique opportunity for intervention prior to onset of invasive cancer. Biomarker discovery in precursor lesions has been hampered by the ready availability of fresh specimens, and limited yields of proteins suitable for large scale screening.
View Article and Find Full Text PDFPurpose: Squamous cell carcinoma of the head and neck (HNSCC), the sixth most prevalent cancer among men worldwide, is associated with poor prognosis, which has improved only marginally over the past three decades. A proteomic analysis of HNSCC lesions may help identify novel molecular targets for the early detection, prevention, and treatment of HNSCC.
Experimental Design: Laser capture microdissection was combined with recently developed techniques for protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues and a novel proteomics platform.
Identification and quantitation of candidate biomarker proteins in large numbers of individual tissues is required to validate specific proteins, or panels of proteins, for clinical use as diagnostic, prognostic, toxicological, or therapeutic markers. Mass spectrometry (MS) provides an exciting analytical methodology for this purpose. Liquid Tissue MS protein preparation allows researchers to utilize the vast, already existing, collections offormalin-fixed paraffin-embedded (FFPE) tissues for the procurement of peptides and the analysis across a variety of MS platforms.
View Article and Find Full Text PDFProteomic analysis of formalin-fixed paraffin-embedded (FFPE) tissue would enable retrospective biomarker investigations of this vast archive of pathologically characterized clinical samples that exist worldwide. These FFPE tissues are, however, refractory to proteomic investigations utilizing many state of the art methodologies largely due to the high level of covalently cross-linked proteins arising from formalin fixation. A novel tissue microdissection technique has been developed and combined with a method to extract soluble peptides directly from FFPE tissue for mass spectral analysis of prostate cancer (PCa) and benign prostate hyperplasia (BPH).
View Article and Find Full Text PDFMethods to print patterns of mammalian cells to various substrates with high resolution offer unique possibilities to contribute to a wide range of fields including tissue engineering, cell separation, and functional genomics. This manuscript details experiments demonstrating that BioLP Biological Laser Printing, can be used to rapidly and accurately print patterns of single cells in a noncontact manner. Human osteosarcoma cells were deposited into a biopolymer matrix, and after 6 days of incubation, the printed cells are shown to be 100% viable.
View Article and Find Full Text PDFA technique by which to print patterns and multilayers of scaffolding and living cells could be used in tissue engineering to fabricate tissue constructs with cells, materials, and chemical diversity at the micron scale. We describe here studies using a laser forward transfer technology to print single-layer patterns of pluripotent murine embryonal carcinoma cells. This report focuses on verifying cell viability and functionality as well as the ability to differentiate cells after laser transfer.
View Article and Find Full Text PDFPurpose: The role of growth factors in ovarian cancer development and progression is complex and multifactorial. We hypothesized that new growth factors may be identified through the molecular analysis of ovarian tumors as they exist in their native environment.
Experimental Design: RNA extracted from microdissected serous low malignant potential (LMP) and invasive ovarian tumors was used to construct cDNA libraries.
Measurement of gene-expression profiles using microarray technology is becoming increasingly popular among the biomedical research community. Although there has been great progress in this field, investigators are still confronted with a difficult question after completing their experiments: how to validate the large data sets that are generated? This review summarizes current approaches to verifying global expression results, discusses the caveats that must be considered, and describes some methods that are being developed to address outstanding problems.
View Article and Find Full Text PDF