Publications by authors named "David B Haviland"

We describe a transducer for low-temperature atomic force microscopy based on electromechanical coupling due to a strain-dependent kinetic inductance of a superconducting nanowire. The force sensor is a bending triangular plate (cantilever) whose deflection is measured via a shift in the resonant frequency of a high- superconducting microwave resonator at 4.5 GHz.

View Article and Find Full Text PDF

Significant progress has been made with multipartite entanglement of discrete qubits, but continuous variable systems may provide a more scalable path toward entanglement of large ensembles. We demonstrate multipartite entanglement in a microwave frequency comb generated by a Josephson parametric amplifier subject to a bichromatic pump. We find 64 correlated modes in the transmission line using a multifrequency digital signal processing platform.

View Article and Find Full Text PDF

We describe a digital microwave platform called Presto, designed for measurement and control of multiple quantum bits (qubits) and based on the third-generation radio-frequency system on a chip. Presto uses direct digital synthesis to create signals up to 9 GHz on 16 synchronous output ports, while synchronously analyzing responses on 16 input ports. Presto has 16 DC-bias outputs, four inputs and four outputs for digital triggers or markers, and two continuous-wave outputs for synthesizing frequencies up to 15 GHz.

View Article and Find Full Text PDF

We present an alternative approach to pump-probe spectroscopy for measuring fast charge dynamics with an atomic force microscope (AFM). Our approach is based on coherent multifrequency lock-in measurement of the intermodulation between a mechanical drive and an optical or electrical excitation. In response to the excitation, the charge dynamics of the sample is reconstructed by fitting a theoretical model to the measured frequency spectrum of the electrostatic force near resonance of the AFM cantilever.

View Article and Find Full Text PDF

Non-invasive thermal noise calibration of both torsional and flexural eigenmodes is performed on numerous cantilevers of 10 different types. We show that for all tipless and short-tipped cantilevers, the ratio of torsional to flexural mode stiffness is given by the ratio of their resonant frequency times a constant, unique to that cantilever type. By determining this constant, we enable a calibration of the torsional eigenmode, starting from a calibration of the flexural eigenmode.

View Article and Find Full Text PDF

We perform a comparative study of dynamic force measurements using an Atomic Force Microscope (AFM) on the same soft polymer blend samples in both air and liquid environments. Our quantitative analysis starts with calibration of the same cantilever in both environments. Intermodulation AFM (ImAFM) is used to measure dynamic force quadratures on the same sample.

View Article and Find Full Text PDF

The Josephson effect, tunnelling of a supercurrent through a thin insulator layer between two superconducting islands, is a phenomena characterized by a spatially distributed phase of the superconducting condensate. In recent years, there has been a growing focus on Josephson junction devices particularly for the applications of quantum metrology and superconducting qubits. In this study, we report the development of Josephson junction circuit formed by serially connecting many Superconducting Quantum Interference Devices, SQUIDs.

View Article and Find Full Text PDF

Surface science, which spans the fields of chemistry, physics, biology and materials science, requires information to be obtained on the local properties and property variations across a surface. This has resulted in the development of different scanning probe methods that allow the measurement of local chemical composition and local electrical and mechanical properties. These techniques have led to rapid advancement in fundamental science with applications in areas such as composite materials, corrosion protection and wear resistance.

View Article and Find Full Text PDF

Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive.

View Article and Find Full Text PDF

Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This calibration is performed without reference to a global standard, hindering the robust comparison of force measurements reported by different laboratories. Here, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others-standardising AFM force measurements-and simultaneously enabling non-invasive calibration of AFM cantilevers of any geometry.

View Article and Find Full Text PDF

We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.

View Article and Find Full Text PDF

We study the interaction between an AFM tip and a soft viscoelastic surface. Using a multifrequency method we measure the amplitude-dependence of the cantilever dynamic force quadratures, which clearly show the effect of finite relaxation time of the viscoelastic surface. A model is introduced which treats the tip and surface as a two-body dynamic problem with a nonlinear interaction depending on their separation.

View Article and Find Full Text PDF

Atomic force microscopy has recently been extented to bimodal operation, where increased image contrast is achieved through excitation and measurement of two cantilever eigenmodes. This enhanced material contrast is advantageous in analysis of complex heterogeneous materials with phase separation on the micro or nanometre scale. Here we show that much greater image contrast results from analysis of nonlinear response to the bimodal drive, at harmonics and mixing frequencies.

View Article and Find Full Text PDF

Conventional dynamic atomic force microscopy (AFM) can be extended to bimodal and multimodal AFM in which the cantilever is simultaneously excited at two or more resonance frequencies. Such excitation schemes result in one additional amplitude and phase images for each driven resonance, and potentially convey more information about the surface under investigation. Here we present a theoretical basis for using this information to approximate the parameters of a tip-surface interaction model.

View Article and Find Full Text PDF

We present a theoretical framework for the dynamic calibration of the higher eigenmode parameters (stiffness and optical lever inverse responsivity) of a cantilever. The method is based on the tip-surface force reconstruction technique and does not require any prior knowledge of the eigenmode shape or the particular form of the tip-surface interaction. The calibration method proposed requires a single-point force measurement by using a multimodal drive and its accuracy is independent of the unknown physical amplitude of a higher eigenmode.

View Article and Find Full Text PDF

We present polynomial force reconstruction from experimental intermodulation atomic force microscopy (ImAFM) data. We study the tip-surface force during a slow surface approach and compare the results with amplitude-dependence force spectroscopy (ADFS). Based on polynomial force reconstruction we generate high-resolution surface-property maps of polymer blend samples.

View Article and Find Full Text PDF

Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip-surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation.

View Article and Find Full Text PDF

Knowledge of surface forces is the key to understanding a large number of processes in fields ranging from physics to material science and biology. The most common method to study surfaces is dynamic atomic force microscopy (AFM). Dynamic AFM has been enormously successful in imaging surface topography, even to atomic resolution, but the force between the AFM tip and the surface remains unknown during imaging.

View Article and Find Full Text PDF

Various methods of force measurement with the atomic force microscope are compared for their ability to accurately determine the tip-surface force from analysis of the nonlinear cantilever motion. It is explained how intermodulation, or the frequency mixing of multiple drive tones by the nonlinear tip-surface force, can be used to concentrate the nonlinear motion in a narrow band of frequency near the cantilever's fundamental resonance, where accuracy and sensitivity of force measurement are greatest. Two different methods for reconstructing tip-surface forces from intermodulation spectra are explained.

View Article and Find Full Text PDF

Nonlinear systems can be probed by driving them with two or more pure tones while measuring the intermodulation products of the drive tones in the response. We describe a digital lockin analyzer which is designed explicitly for this purpose. The analyzer is implemented on a field-programmable gate array, providing speed in analysis, real-time feedback, and stability in operation.

View Article and Find Full Text PDF

Cell adhesion is an important process in several biological phenomena. To investigate the formation and organization of focal adhesions, we developed a patterning approach based on electron beam lithography. Nanodots (radius <1230 nm) and nanorings (inner radius <320 nm) of fibronectin (FN) were patterned on a K-Casein background.

View Article and Find Full Text PDF

Intermodulation atomic force microscopy (IMAFM) is a dynamic mode of atomic force microscopy (AFM) with two-tone excitation. The oscillating AFM cantilever in close proximity to a surface experiences the nonlinear tip-sample force which mixes the drive tones and generates new frequency components in the cantilever response known as intermodulation products (IMPs). We present a procedure for extracting the phase at each IMP and demonstrate phase images made by recording this phase while scanning.

View Article and Find Full Text PDF

Electron beam lithography (EBL) is used to create surfaces with protein patterns, which are characterized by immunofluorescence and atomic force microscopies. Both negative and positive image processes are realized by electron beam irradiation of proteins absorbed on a silicon surface, where image reversal is achieved by selectively binding a second species of protein to the electron beam exposed areas on the first protein layer. Biofunctionality at the cellular level was established by culturing cortical cells on patterned lines of fibronectin adsorbed on a bovine serum albumin background for 7 days in culture.

View Article and Find Full Text PDF

Nanodots of fibronectin which have radii as small as 100 nm and are biofunctional at the cellular level, can be rapidly fabricated in arbitrary spatial patterns using a technique based on electron beam exposure of a protein monolayer with subsequent backfilling of a second protein species.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona56o1n4hthptatfpk70mrn9q9bp0269e): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once